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(cf. equation (1.23)). Of special importance is the expectation of the product (g(X, ¥) =
(X — E(X))Y — E(Y)), which is known as the covariance of X and Y,

oyy £ E [(X — EG))Y — E@))],

and which is often normalized to yield the correlation coefficient

Txy
Ox0y

and the regression coefficient é O/F __){_ on !_ %‘

Pxy =

A 9x _ Oxy
rxy —PXYU_Y = o
¥

The conditional variance, covariance, and correlation coefficient, given Z = z, are
defined in a similar manner, using the conditional distribution P(x, y [2) in taking expec-
tations. In particular, the conditional correlation coefficient, given Z = z, is defined as

OXY|z

Pxyz = (1.24)

OxzTy|z
Additional properties, specific to normal distributions, will be reviewed in Chapter 5
(Section 5.2.1).

The foregoing definitions apply to discrete random variables — that is, variables that
take on finite or denumerable sets of values on the real line. The treatment of expectation
and correlation is more often applied to continuous random variables, which are charac-
terized by a density function f(x) defined as follows:

b
Pa=X=b= f Sx) elx

for any two real numbers @ and b with @ < b. If X is discrete, then f(x) coincides with
the probability function P(x), once we interpret the integral through the translation

f_ _fdx <= > P(x). (1.25)
X

Readers accustomed to continuous analysis should bear this translation in mind when-
ever summation is used in this book. For example, the expected value of a continuous
random variable X can be obtained from (1.21), to read

am:[i#ma,

with analogous translations for the variance, correlation, and so forth.
We now tumn to define conditional independence relationships among variables, a
central notion in causal modelling.
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1.1.5 Conditional Independence and Graphoids

Definition 1.1.2 (Conditional Independence)

Let V = {V,, V,,...} be a finite set of variables. Let P(-) be a joint probability function
over the variables in'V, and let X, Y, Z stand for any three subsets of variables in' V. The
sets X and Y are said to be conditionally independent given Z if

P(x|y,z) = P(x|z) whenever P(y,z)> 0. (1.26)

In words, learning the value of Y does not provide additional information about X, once
we know Z. (Metaphorically, Z “screens off” X fromY.)

Equation (1.26) is a terse way of saying the following: For any configuration x of the
variables in the set X and for any configurations y and z of the variables in ¥ and Z sat-
isfying P(Y =y, Z = z) > 0, we have

PX=x|Y=yZ=2)=PX=x|Z=2) (1.27)

We will use Dawid’s (1979) notation (X ILY | Z)p or simply (XY | Z) to denote
the conditional independence of X and Y given Z; thus,

(XILY|Z)p iff P(x|y,z) = P(x|2) (1.28)

for all values x, y, z such that P(y, z) > 0. Unconditional independence (also called
marginal independence) will be denoted by (X ILY | @); that is,

(X1LY | @) iff P(x|y) = P(x) whenever P(y) > 0 (1.29)
(“iff” is shorthand for “if and only if”). Note that (X 1LY | Z) implies the conditional

Caps /l ik indipetndence of all pairs of variables V; € X and V; € ¥, but the converse is not neces-
sarily true

The following is a (partial) list of properties satisfied by the conditional independence

Té X_U_Y | Z?r relation (XJJ_)/| Z),

Symmetry: (XY |Z) = (Y1X|Z).

Decomposition: (X LYW |Z)=>(X1Y|Z).

Weak union: (X1LYW | Z) = (X 1LY | ZW).

Contraction: (X 1LY |Z) & (XU W |ZY)=> X 1YW |Z).

Intersection: (X LW |ZY) & (X 1LY |ZW) = (X 1YW | 2).

(Intersection is valid in strictly positive probability distributions.)
The proof of these properties can be derived by elementary means tfrom (1.28) and
the basic axioms of probability theory.* These properties were called graphoid axioms by

4 These properties were first introduced by Dawid (1979) and Spohn (1980) in a slightly different
form, and were independently proposed by Pearl and Paz (1987) to characterize the relationships
between graphs and informational relevance. Geiger and Pearl (1993) present an in-depth analysis.
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to constants x.'® Denote by Py the set of all interventional distributions P, (v),X C V,
including P(v), which represents no intervention (i.e., X = ¢). A DAG G is said to be a
causal Bayesian network compatible with Py if and only if the following three conditions
hold for every P, € Px:

(i) P.(v)is Markov relative to G;
(i) P(v) =1 for all V; € X whenever v; is consistent with X = x;
(iii) P,(v;|pa) = P(v;| pa)) for all V; & X whenever pa; is consistent with X = x,
i.e., each P(v; | pa;) remains invariant to interventions not involving V.

Definition 1.3.1 imposes constraints on the interventional space P that permit us to en-
code this vast space economically, in the form of a single Bayesian network G. These
constraints enable us to compute the distribution P ,(v) resulting from any intervention
do(X = x) as a truncated factorization

Py = I P@;pa)  forall vconsistent with x, (1.37)
{i| ViEX}
which follows from iti justifies the family deletion procedure on G, as

[{and imp!ies?
conditions

£ix €1F, Thus
Jasd‘fﬂinj

in (1.36). It is not hard to show that, whenever G is a causal Bayes network with respect
to P, the following two properties must hold.

Property 1
For all i,

P(v; | pap) = Ppq V). (1.38)

Property 2
For all i and for every subset S of variables disjoint of {V,;, PA;}, we have

Ppa,-, o = Ppa,(vi)' (1.39)

Property 1 renders every parent set PA; exogenous relative to its child V;, ensuring that
the conditional probability P(v; | pa;) coincides with the effect (on V}) of setting PA; to
pa; by external control. Property 2 expresses the notion of invariance; once we control
its direct causes PA;, no other interventions will affect the probability of V..

1.3.2 Causal Relationships and Their Stability

This mechanism-based conception of interventions provides a semantical basis for no-
tions such as “causal effects” or “causal influence,” to be defined formally and analyzed
in Chapters 3 and 4. For example, to test whether a variable X; has a causal influence
on another variable X j» We compute (using the truncated factorization formula of (1.37))
the (marginal) distribution of X f under the actions do(X; = x;) — namely, Pxf(xj) for all

1% The notation P (v) will be replaced in subsequent chapters with P(v | do(x)) and P(v | %) to
facilitate algebraic manipulations.
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Ry: Orient b — c into b — ¢ whenever there is an arrow @ — b such that @ and ¢
are nonadjacent.

Ry Orient @ — b into a — b whenever there is chain a — ¢ — b.

R3: Orient @ — b into @ —> b whenever there are two chains ¢ — ¢—b and
a — d — b such that ¢ and d are nonadjacent.

R4 Orient a — b into a — b whenever there are two chains ¢ — ¢ —d and
¢ — d — b such that ¢ and b are nonadjacent and a and d are adjacent.

Meek (1995) showed that these four rules are also sufficient, so that repeated appli-
cation will eventually orient al/ arrows that are common to the equivalence class of Dy,.
Moreover, R, is not required if the starting orientation is limited to v-structures.

Another systematization is offered by an algorithm due to Dor and Tarsi (1992) that
tests (in polynomial time) if a given partially oriented acyclic graph can be fully oriented
without creating a new wv-structure or a directed cycle. The test is based on recursively
removing any vertex v that has the following two properties:

1. no edge is directed outward from v;

2. every neighbor of v that is connected to v through an undirected edge is also ad-
jacent to all the other neighbors of v.

A partially oriented acyclic graph has an admissible extension in a DAG if and only if all
its vertices can be removed in this fashion. Thus, to find the maximally oriented pattern,
we can (i) separately try the two orientations, @ — b and a < b, for every undirected
edge a — b, and (ii) test whether both orientations, or just one, have extensions. The set
of uniquely orientable arrows constitutes the desired maximally oriented pattern. Addi-
tional refinements can be found in Chickering (1995), Andersson et al. (1997), and Moole
(1997).

Latent structures, however, require special treatment, because the constraints that a
latent structure imposes upon the distribution cannot be completely characterized by any
set of conditional independence statements. Fortunately, certain sets of those indepen-
dence constraints can be identified (Verma and Pearl 1990); this permits us to recover
valid fragments of latent structures,

2.6 RECOVERING LATENT STRUCTURES

When Nature decides to “hide” some variables, the observed distribution P need no
longer be stable relative to the observable set O. That is, we are no longer guaranteed
that, among the minimal latent structures compatible with P, there exists one that has a
DAG structure. Fortunately, rather the‘ having to search through this unbounded space of
latent structures, the search can be confined to graphs with finite and well-defined struc-
tures. For every latent structure L, there is a dependency-equivalent latent structure (the
projection) of L on O in which every unobserved node is a root node with exactly two
observed children. We characterize this notion explicitly as follows.

¥ A‘l‘han
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over the space of possible structures to seek the one(s) with the highest posterior score.
Methods based on this approach have the advantage of operating well under small-sample
conditions, but they encounter difficulties in coping with hidden variables. The assump-
tion of parameter independence, which is made in all practical implementations of the
Bayesian approach, induces preferences toward models with fewer parameters and hence
toward minimality. Likewise, parameter independence can be justified only when the pa-
rameters represent mechanisms that are free to change independently of one another —
that is, when the system is autonomous and hence stable.

Postscript for the Second Edition

Work on causal discovery has been pursued vigorously by the TETRAD group at
Carengie Mellon University and reported in Spirtes et al. (2000), Robins et al. (2003),

Scheines (2002), and Moneta and Spirtes (2006). <€

Applications of causal discovery in economics are reported in Bessler (2002),
Swanson and Granger (1997), and Demiralp and Hoover (2003). Gopnik et al. (2004)
applied causal Bayesian networks to explain how children acquire causal knowledge
from observations and actions (see also Glymour 2001).

Hoyer et al. (2006) and Shimizu et al. (2005, 2006) have proposed a new scheme of
discovering causal directionality, based not on conditional independence but on func-
tional composition, The idea is that in a linear model X — ¥ with non-Gaussian noise,
variable Y is a linear combination of two independent noise terms. As a consequence,
P(y) is a convolution of two non-Gaussian distributions and would be, figuratively
speaking, “more Gaussian” than P(x). The relation of “more Gaussian than’ can be
given precise numerical measure and used to infer directionality of certain arrows.

Tian and Pearl (2001a,b) developed yet another method of causal discovery based on
the detection of “shocks,” or spontaneous local changes in the environment which act
like “Nature’s interventions,” and unveil causal directionality toward the consequences
of those shocks.

Verma and Pearl (1990) noted that two latent structures may entail the same set of
conditional independencies and yet impose different equality constraints on the joint
distributions. These constraints, dubbed “dormant independencies,” were characterized
systematically in Tian and Pearl (2002b) and Shpitser and Pearl (2008); they promise to
provide a powerful new discovery tool for structure learning.

A program of benchmarks of causal discovery algorithms, named “Causality
Workbench,” has been reported by Guyon et al. (2008a,b; http://clopinet.com/causality).
Regular contests are organized in which participants are given real data or data generated
by a concealed causal model, and the challenge is to predict the outcome of a select set
of interventions.

centéonce

Spirtes 5 Glymour, Scheines. and Tillman € 2010F

summarize +he current state o{? the art in

causal discovery o
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A collection of constraints of this type might sometimes be sufficient to permit a
unique solution to the query of interest; in other cases, only bounds on the solution can
be obtained. For example, if one can plausibly assume that a set Z of covariates satisfies
the conditional independence

Y(x) 1L X|Z (3.53)

(an assumption that was termed “conditional ignorability” by Rosenbaum and Rubin

1983), then the causal effect P*(¥(x) = y) can readily be evaluated, using (3.52), to
a1 12

yield

PHY(x) =y) = 2 P*(Y(x) = y|2) P(2)

Z

2 PHY() = y|x,2) P()

z

= D P¥Y =y|x,2) P(z)

= > P(y|x,2) P(2). (3.54)

The last expression contains no counterfactual quantities (thus permitting us to drop the
asterisk from P*) and coincides precisely with the adjustment formula of (3.19), which
obtains from the back-door criterion. However, the assumption of conditional ignora-
bility (equation (3.53)) — the key to the derivation of (3.54) — is not straightforward to
comprehend or ascertain. Paraphrased in experimental metaphors, this assumption reads:
The way an individual with attributes Z would react to treatment X = x is independent
of the treatment actually received by that individual. traditional

Section 3.6.2 explains why this approach may appeal to &-n%statisticians, even
though the process of eliciting judgments about counterfactual dependencies has been
extremely difficult and error-prone; instead of constructing new vocabulary and new
logic for causal expressions, all mathematical operations in the potential-outcome frame-
work are conducted within the safe confines of probability calculus. The drawback lies
in the requirement of using independencies among counterfactual variables to express
plain causal knowledge. When counterfactual variables are not viewed as by-products of
a deeper, process-based model, it is hard to ascertain whether all relevant counterfactual
independence judgments have been articulated,'3 whether the judgments articulated are
redundant, or whether those judgments are self-consistent. The elicitation of such coun-
terfactual judgments can be systematized by using the following translation from graphs
(see Section 7.1.4 for additional relationships).

Graphs encode substantive information in both the equations and the probability func-
tion P(u); the former is encoded as missing arrows, the latter as missing dashed arcs.

12 Gibbard and Harper (1976, p. 157) used the “ignorability assumption” ¥(x) 1L X to derive the
equality P(Y(x) = y) = P(y | x).

3 A typical oversight in the example of Figure 3.7(b) has been to write Z 1L ¥ (x) and Z 1L X (z)
instead of Z 1L {Y (x), X(2)}, as dictated by (3.56).

o
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Phil showed special courage in printing my paper in Biometrika (Pearl 1995a), the jour-
nal founded by causality’s worst adversary — Karl Pearson.

Postscript for the Second Edition

Complete identification results

A key identification condition, which generalizes all the criteria established in this chap-
ter, has been derived by Jin Tian. It reads:

Theorem 3.6.1 (Tian and Pearl, 2002a)

A sufficient condition for identifying the causal effect P(y | do(x)) is that there exists no
bi-directed path (i.e., a path composed entirely of bi-directed arcs) between X and any
of its children.'

Remarkably, the theorem asserts that, as long as every child of X (on the pathways to ¥)
is not reachable from X via a bi-directed path, then, regardless of how complicated the
graph, the causal effect P(y |do(x)) is identifiable. All identification criteria discussed
in this chapter are special cases of the one defined in this theorem. For example, in
Figure 3.5 P(y|do(x)) can be identified because the two paths from X to Z (the only child of
X) are not bi-directed. In Figure 3.7, on the other hand, there is a path from X to Z; tra-
versing only bi-directed arcs, thus violating the condition of Theorem 3.6.1, and P(y| do(x))
is not identifiable.

Note that all graphs in Figure 3.8 and none of those in Figure 3.9 satisfy the con-
dition above. Tian and Pearl (2002a) further showed that the condition is both suffi-
cient and necessary for the identification of P(v | do(x)), where V includes all vari-
ables except X. A necessary and sufficient condition for identifying P(w | do(z)), with
W and Z two arbitrary sets, was established by Shpitser and Pearl (2006b).
Subsequently, a complete graphical criterion was established for determining the
identifiability of conditional interventional distributions, namely, expressions of the
type P(y | do(x), z) where X, ¥, and Z are arbitrary sets of variables (Shpitser and Pearl
2006a).

These results constitute a complete characterization of causal effects in graphical
models. They provide us with polynomial time algorithms for determining whether an
arbitrary quantity invoking the do(x) operator is identified in a given semi-Markovian
model and, if so, what the estimand of that quantity is. Remarkably, one corollary of these
results also states that the do-calculus is complete, namely, a quantity Q = P(y | do(x), z)
is identified if and only if it can be reduced to a do-free expression using the three rules

Add
gentente

of Theorem 3.4.1.' Tian and Shpitser £ 20108 provide a comprehensive

summary o{.‘ these resultsg

Applications and Critics

Gentle introductjons to the concepts developed in this chapter are given in (Pearl 2003c)
and (Pearl ZOOﬂ). Applications of causal graphs in epidemiology are reported in Robins

15 Before applying this criterion, one may delete from the causal graph all nodes that are not ances-
tors of Y.
16 This was independently established by Huang and Valtorta (2006).
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(2001), Hernan et al. (2002), Heman et al. (2004), Greenland and Brumback (2002),
Greenland et al. (1999a,b) Kaufman et al. (2005), Petersen et al. (2006), Hernandez-Diaz
et al. (2006), VanderWeele and Robins (2007) and Glymour and Greenland (2008).
Interesting applications of the front-door criterion (Section 3.3.2) were noted in
social science (Morgan and Winship 2007) and economics (Chalak and White 2006).
Some advocates of the “potential outcome” approach have been most resistant to
accepting graphs or structural equations as the basis for causal analysis and, lacking
these conceptual tools, were unable to address the issue of covariate selection
(Rosenbaum 2002, p. 76; Rubin 2007, 2008a) and were led to dismiss important
scientific concepts as “ill-defined,” “deceptive,” “confusing” (Holland 2001; Rubin
2004, 2008b), and worse (Rubin 2009). Lauritzen (2004) and Heckman (2005) have
denmOTTstrates-its-fattacies)

Equally puzzling are concerns of some philosophers (Cartwright 2007; Woodward
2003) and economists (Heckman 2005) that the do-operator is too local to model com-
plex, real-life policy interventions, which sometimes affect several mechanisms at once
and often involve conditional decisions, imperfect control, and multiple actions, These
concerns emerge from conflating the mathematical definition of a relationship (e.g.,
causal effect) with the technical feasibility of testing that relationship in the physical
world. While the do-operator is indeed an ideal mathematical tool (not unlike the deriv-
ative in differential calculus), it nevertheless permits us to specify and analyze interven-
tional strategies of great complexity. Readers will find examples of such strategies in
Chapter 4, and a further discussion of this issue in Chapter 11 (Sections 11.4.3-11.4.6
and Section 11.5.4),

Chapter Road Map to the Main Results

The three key results in this chapter are: 1. The control of confounding, 2. The evalua-
tion of policies, and 3. The evaluation of counterfactuals.

1. The problem of controlling confounding bias is resolved through the back-door
condition (Theorem 3.3.2, pp.79-80) — a criterion for selecting a set of covari-
ates that, if adjusted for, would yield an unbiased estimate of causal effects.

2. The policy evaluation problem — to predict the effect of interventions from non-
experimental data — is resolved through the do-calculus (Theorem 3.4.1, pp.
85-86) and the graphical criteria that it entails (Theorem 3.3.4, p. 83; Theorem
3.6.1, p. 105). The completeness of do-calculus implies that any (nonparametric)
policy evaluation problem that is not supported by an identifying graph, or an
equivalent set of causal assumptions, can be proven “unsolvable.”

3. Finally, equation (3.51) provides a formal semantics for counterfactuals, through
which joint probabilities of counterfactuals can be defined and evaluated in the

ioa) Tlluminates s alamjinj conx1m%

framework of scientific theories (see Chapter 7). :m:& semantics wyll 'Q.NGHG
us 4o d&u(o? a number a-F +echniques for wu"ﬂ*’-ﬁc-fual

analyses :€ charrers 8= 1E; " including the Mediation

Formula £ equations ;€4a[i+}- =4 1975 % a key

“ool for assessing causal pathways in nonlinear modelsg
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4.5.5 Indirect Effects

Remarkably, the definition of the natural direct effect (4.11) can easily be turmed aroupd
and provide an operational definition for the indirect effect — a concept shroudgd in
mystery and controversy, because it is impossible, using the do(x) operator, toAisable
the direct link from X to Y so as to let X influence ¥ solely via indirect paths, F

The natural indirect effect, /E, of the transition from x to x’ is defined as/Ahe expected
change in Y affected by holding X constant, at X = x, and changing Z tgAvhatever value
it would have attained had X been set to X = x'. Formally, this reads (Pearl 2001c);

IE, «(Y) £ E[(Y(x, Z(')) — E(Y(x))],

which is almost identical to the direct effect (equation (4.11)) sayeé for exchanging x and x'.
Indeed, it can be shown that, in general, the total effect 7 of a transition is equal to
the difference between the direct effect of that transition/and the indirect effect of the

reverse transition. Formally,
TE; K¥) L E(Y(x) — Y(x)) = DE; Y) — IE(Y). 4.15)

In linear systems, where reversal of transition
effects, we have the standard additive formula /

TE, #(Y) = DE, o(Y) + IE, (Y).

amounts to negating the signs of their

(4.16)

Since each term above is based on an ipdependent operational definition, this quality
constitutes a formal justification for thg/additive formula.

Note that the indirect effect has clear policy-making implications. For example: in a
hiring discrimination environment/a policy maker may be interested in predicting the
gender mix in the work force if gender bias is eliminated and all applicants are treated
equally — say, the same way __«"'” males are currently treated. This quantity will be given
by the indirect effect of gendef on hiring, mediated by factors such as education and apti-
tude, which may be gende ependent.

More generally, a policy maker may be interested in the effect of issuing a directive
to a select set of subordinate employees, or in carefully controlling the routing of mes-
sages in a network of interacting agents, Such applications motivate the analysis of path-
specific effects, that fs, the effect of X on ¥ through a selected set of paths (Avin et al.
2005). :

Note that in all these cases, the policy intervention invokes the selection of signals to be
sensed, rather than variables to be fixed. Pearl (2001c) has suggested therefore that signal
sensing is more fundamental to the notion of causation than manipulation; the latter being
but a crude way of stimulating the former in experimental setup. (See Section 11.4.5.)

emarkable that counterfactual quantities like DE and /E that could not be
expressed in terms of do(x) operators, and appear therefore void of empirical content,
can, unger certain conditions, be estimated from empirical studies. A general analysis of
those gonditions is given in Shpitser and Pearl (2007).
¥e shall see additional examples of this “marvel of formal analysis” in Chapters 7,
9, and 11. It constitutes an unassailable argument in defense of counterfactual analysis,
as’expressed in Pearl (2000) against the stance of Dawid (2000).



4.5.5 Indirect Effects and the Mediation Formula

Remarkably, the definition of the natural direct effect (4.11) can easily be turned around
and provide an operational definition for the indirect effect —a concept shrouded in mys-
tery and controversy, because it is impossible, using the do(z) operator, to disable the
direct link from X to ¥ so as to let X influence ¥ solely via indirect paths,

The natural indirect effect, / E, of the transition from z to 2’ is defined as the expected
change in Y affected by holding X constant, at X = z, and changing Z to whatever value
it would have attained had X been set to X = z’. Formally, this reads (Pearl 2001c):

IE.»(Y) & E[(Y(z, Z(z")) — E(Y (z))], (4.14)

We see that, in general, the total effect TE of a transition is equal to the difference
between the direct effect of that transition and the indirect effect of the reverse transition:

TE,;0(Y) 2 E(Y(2') —Y(2)) = DEp o (Y) — IEy ,(Y). (4.15)

In linear models, where reversal of transitions amounts to negating the signs of their
effects, (4.15) provides a formal justification for the standard additive formula

TE; (YY) = DE; o (Y) + IE; (Y. (4.16)

In the simple case of unconfounded mediators, the natural direct and indirect effects
are estimable through two regression equations called the Mediation Formula:

DE,(Y) =) [E(Y|z',2) — BE(Y|z, 2)|P(z[z). (4.17)
IE; o (Y) =) E(Y|z,2)[P(zlz') — P(z]z)] (4.18)

These provide two ubiquitous measures of mediation effects, applicable to any nonlinear
system, any distribution, and any type of variables (Pearl 2009b, 2010b).

Note that the indirect effect has clear policy-making implications. For example: in
a hiring discrimination environment, a policy maker may be interested in predicting the
gender mix in the work force if gender bias is eliminated and all applicants are treated
equally—say, the same way that males are currently treated. This quantity will be given
by the indirect effect of gender on hiring, mediated by factors such as education and
aptitude, which may be gender-dependent. See (Pearl 2001¢, 2010b) for more examples.

More generally, a policy maker may be interested in the effect of motivating a select
set of subordinate employees, or of controlling the routing of messages in a network of
interacting agents. Such applications motivate the analysis of path-specific effects, that
is, the effect of X on Y through a selected set of paths (Avin et al. 2003).

In all these cases, the policy intervention invokes the selection of signals to be sensed,
rather than variables to be fixed. Pearl (2001c) has suggested therefore that signal sensing
is more fundamental to the notion of causation than manipulation; the latter being but a
crude way of stimulating the former in experimental setup (see Section 11.4.5). A general
characterization of counterfactuals that are empirically testable is given in Chapters 7, 9,
11, and in Shpitser and Pearl (2007).
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This model is as compact as (5.7)—(5.9) and is covariance equivalent to M with respect
to the observed variables X, Y, Z. Upon setting &’ = «, 8’ = B, and 6 = vy, model M’
will yield the same probabilistic predictions as those of the model of (5.7)—(5.9). Still,
when viewed as data-generating mechanisms, the two models are not equivalent. Each
tells a different story about the processes generating X, Y, and Z, so naturally their pre-
dictions differ concerning the changes that would result from subjecting these processes
to external interventions.

5.3.3 Causal Effects: The Interventional Interpretation of Structural
Equation Models

The differences between models M and M’ illustrate precisely where the structural read-
ing of simultaneous equation models comes into play, and why even causally shy re-
searchers consider structural parameters more “meaningful” than covariances and other
statistical parameters. Model M’, defined by (5.12)—(5.14), regards X as a direct par-
ticipant in the process that determines the value of Y, whereas model M, defined by
(5.7—(5.9), views X as an indirect factor whose effect on Y is mediated by Z. This dif-
ference is not manifested in the data itself but rather in the way the data would change in
response to outside interventions. For example, suppose we wish to predict the expecta-
tion of Y after we intervene and fix the value of X to some constant x; this is denoted
E(Y|do(X = x)). After X = x is substituted into (5.13) and (5.14), model M’ yields

E[Y|doX = x)] = E[B'a'x + B'ey + 6x + &3] (5.15)
= (B'a’ + d)x; (5.16)
model M yields
E[Y|do(X = x)] = E [Bax + Bey + yu + &3] (5.17)
= Bax. (5.18)

Upon setting o’ = «, B’ = B, and § = 7y (as required for covariance equivalence; see
(5.10) and (5.11)), we see clearly that the two models assign different magnitudes to the
(total) causal effect of X on Y: model M predicts that a unit change in x will change
E(Y) by the amount Ba, whereas model M’ puts this amount at Ba + 0.

At this point, it is tempting to ask whether we should substitute x — & for u in (5.9)
prior to taking expectations in (5.17). If we permit the substitution of (5.8) into (5.9), as
we did in deriving (5.17), why not permit the substitution of (5.7) into (5.9) as well? Af-
ter all (the argument runs), there is no harm in upholding a mathematical equality, u =
X — &1, that the modeler deems valid. This argument is fallacious, however." Structural
equations are not meant to be treated as immutable mathematical equalities. Rather, they
are meant to define a state of equilibrium — one that is violated when the equilibrium is
perturbed by outside interventions. In fact, the power of structural equation models is

15 Such arguments have led to Newcomb’s paradox in the so-called evidential decision theory (see
Section 4.1.1).



5.4 Some Conceptual Underpinnings 169

and the parameter of interest ic Nz Py, [xg¥s
if X and Y are dlchotomousAthen the marginal probability P(x) certainly “involves” pa-
rameters such as

/\] = P()Co, yo) + P(XO,)I]) and /\2 = P(JCO, yo),
_as-weltas-theirresio?s And A “invo[ves” their ratio ®
A= 1\2/).1.

Therefore, writing P(xp) = A,/A shows that both A and A, are involved in the marginal
probability P(xp), and one may be tempted to conclude that X is not exogenous relative
to A. Yet X is in fact exogenous relative to A, because the ratio A = A5/A is none other
than P(yp Ixo); hence it is determined uniquely by P(yg | Xp) as required by (5.33).25

The advantage of the definition given in (5.31) is that it depends not on the syntactic
representation of the density function but rather on its semantical content alone. Param-
eters are treated as quantities computed from a model, and not as mathematical symbols
that describe a model. Consequently, the definition applies to both statistical and struc-
tural parameters and, in fact, to any quantity A that can be computed from a structural
model M, regardless of whether it serves (or may serve) in the description of the marginal
or conditional densities.

The Mystical Error Term Revisited

Historically, the definition of exogeneity that has evoked most controversy is the one ex-
pressed in terms of correlation between variables and errors. It reads as follows.

Definition 5.4.6 (Error-Based Exogeneity)
A variable X is exogenous (relative to A = P(y | do(x))) if X is independent of all errors
that influence Y, except those mediated by X.

This definition, which Hendry and Morgan (1995) trace to Orcutt (1952), became standard
in the econometric literature between 1950 and 1970 (e.g., Christ 1966, p. 156; Dhrymes
1970, p. 169) and still serves to guide the thoughts of most econometricians (as in the
selection of instrumental variables; Bowden and Turkington 1984). However, it came un-
der criticism in the early 1980s when the distinction between structural errors (equation
(5.25)) and regression errors became obscured (Richard 1980). (Regression errors, by
definition, are orthogonal to the regressors.) The Cowles Commission logic of structural
equations (see Section 5.1) has not reached full mathematical maturity and — by denying
notational distinction between structural and regressional parameters — has left all no-
tions based on error terms suspect of ambiguity. The prospect of establishing an entirely
new foundation of exogeneity — seemingly free of theoretical terms such as “errors”™ and
“structure” (Engle et al. 1983) — has further dissuaded economists from tidying up the
Cowles Commission logic, and criticism of the error-based definition of exogeneity has
become increasingly fashionable. For example, Hendry and Morgan (1995) wrote that

25 Engle et al. (1983, p. 281)and Hendry (1995, pp. 162-3)oem'p'fal-lajvercome this ambiguity by
using Jreparameterization” ~ errMiceessary-comptivatea?” g Mussar‘[ s—['e,P whi oh

selective textbeoks “rend 1o ignoreg
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This chapter has described the conceptual developments that now resolve such foun-
dational questions. (Sections 11.5.2 and 11.5.3 provide further elaboration.) In addition,
we have presented several tools to be used in answering questions of practical importance:

1. When are two structural equation models observationally indistinguishable?
2. When do regression coefficients represent path coefficients?

3. When would the addition of a regressor introduce bias?
4

How can we tell, prior to collecting any data, which path coefficients can be iden-
tified?

5. When can we dispose of the linearity—normality assumption and still extract
causal information from the data?

I remain hopeful that researchers will recognize the benefits of these concepts and
tools and use them to revitalize causal analysis in the social and behavioral sciences.

5.6 Postscript for the Second Edition

5.6.1 An Econometric Awakening?

After decades of neglect of causal analysis in economics, a surge of interest seems to be in
progress. In a recent series of papers, Jim Heckman (2000, 2003, 2005, 2007 (with
Vytlacil)) has made great efforts to resurrect and reassert the Cowles Commission interpre-
tation of structural equation models, and to convince economists that recent advances in
causal analysis are rooted in the ideas of Haavelmo (1943), Marschak (1950}, Roy (1951),
and Hurwicz (1962). Unfortunately, Heckman still does not offer econometricians clear
answers to the questions posed in this chapter (pp. 133, 170, 171, 215-217). In particular,
unduly concerned with implementational issues, Heckman rejects Haavelmo’s “equation
wipe-out” as a basis for defining counterfactuals and fails to provide econometricians with
an alternative definition, namely, a procedure, like that of equation (3.51), for computing the
counterfactual Y(x, u) in a well-posed economic model, with X and Y two arbitrary variables
in the mode}?) (See Sections 11.5.4-5.) Such a definition is essential for endowing the
“potential outcome” approach with a formal semantics, based on SEM, and thus unifying
the two economeltric camps currently working in isolation.

Another sign of positive awakening comes from the social sciences, through the pub-
lication of Morgan and Winship’s book Counterfactual and Causal Inference (2007), in
which the causal reading of SEM is clearly reinstated.?’

5.6.2 Identification in Linear Models

In a series of papers, Brito and Pearl (2002a,b, 2006) have established graphical criteria
that significantly expand the class of identifiable semi-Markovian linear models beyond
those discussed in this chapter. They first proved that identification is ensured in all

2T Though the SEM basis of counterfactuals is unfortunately not articulated.
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graphs that do not contain bow-arcs, that is, no error correlation is allowed between a
cause and its direct effect, while no restrictions are imposed on errors associated with
indirect causes (Brito and Pearl 2002b). Subsequently, generalizing the concept of
instrumental variables beyond the classical patterns of Figures 5.9 and 5.11, they estab-
lish a general identification condition that is testable in polynomial time and subsumes
all conditions known in the literature. See.als%, McDonald (2002a)7” -ﬁf an a lﬂtbl" are
approacha and Brito £2.010% for a gentle introduction and
a survey of resultsm

5.6.3 Robustness of Causal Claims

Causal claims in SEM are established through a combination of data and the set of
causal assumptions embodied in the model. For example, the claim that the causal effect
E(Y | do(x)) in Figure 5.9 is given by ax =, ryz/rxz x is based on the assumptions:
cov(ez, ey) = 0 and E(Y | do(x, 2)) = E(Y | do(@)); both are shown in the graph. A claim is
robust when it is insensitive to violations of some of the assumptions in the model. For
example, the claim above is insensitive to the assumption cov(ez, exy) = 0, which is
shown in the model.

When several distinct sets of assumptions give rise to % distinct estimands for a
parameter «, that parameter is called k-identified; the higher the &, the more robust are
claims based on «, because equality among these estimands imposes £ — 1 constraints
on the covariance matrix which, if satisfied in the data, indicate an agreement among
distinct sets of assumptions, thus supporting their validity. A typical example emerges
when several (independent) instrumental variables are available Z,, Z,, ..., Z, for a single
link X — ¥, which yield the equalities @ = ryz, /rxz, = ryz,/Txz, = =+ = r'vz,/"xz;

Pearl (2004) gives a formal definition for this notion of robustness, and established
graphical conditions for quantifying the degree of robustness of a given causal claim.
k-identification generalizes the notion of degree of freedom in standard SEM analysis;
the latter characterizes the entire model, while the former applies to individual parame-
ters and, more generally, to individual causal claims.
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Thus, similarities and priorities — if they are ever needed — may be read into the do(-)
operator as an afterthought (see discussion following (3.11) and Goldszmidt and Pearl
1992), but they are not basic to the analysis.

The structural account answers the mental representation question by offering a par-
simonious encoding of knowledge from which causes, counterfactuals, and probabilities
of counterfactuals can be derived by effective algorithms. However, this effectiveness is
partly acquired by limiting the counterfactual antecedent to conjunction of elementary
propositions. Disjunctive hypotheticals, such as “if Bizet and Verdi were compatriots,”
usually lead to multiple solutions and hence to nonunique probability assignments.

7.4.2 Axiomatic Comparison

If our assessment of interworld distances comes from causal knowledge, the question
arises of whether that knowledge does not impose its own structure on distances, a struc-
ture that is not captured in Lewis’s logic. Phrased differently: By agreeing to measure
closeness of worlds on the basis of causal relations, do we restrict the set of counterfac-
tual statements we regard as valid? The question is not merely theoretical. For example,
Gibbard and Harper (1976) characterized decision-making conditionals (i.e., sentences
of the form “If we do A, then B”) using Lewis’s general framework, whereas our do(-)
operator is based on functions representing causal mechanisms; whether the two for-
malisms are identical is uncertain.?!

We now show that the two formalisms are identical for recursive systems; in other
words, composition and effectiveness hold with respect to Lewis’s closest-world frame-
work whenever recursiveness does. We begin by providing a version of Lewis’s logic for
counterfactual sentences (from Lewis 1973c).

Rules

(1) If A and A = B are theorems, then so is B.

(2) If (By & ...) => C s atheorem, then so is (A [ By)...) =
A~ O).

Axioms

(1) All truth-functional tautologies.

2y A0— A.

B)AO—>B) & BO-A) = AO-> O=B O~ O

@ (AvB) O AVAVBIO-BV
(AVB[Od=-0=A0> 0 & (BO— O).

(5) Al» B) = A = B.

(6) A & By = A [~ B.

2l Ginsberg and Smith (1987) and Winslett (1988) have also advanced theories of actions based on
closest-world semantics; they have not imposed any special structure for the distance measure to

reflect causal considerations. P-4y | :fg_oloa,g‘- dfs(,usses “+he munf&rfao‘[‘uql
iterpretation of do%A or B3,
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In Chapter 9 we will continue the analysis of causal attribution in specific events,
and we will establish conditions under which the probability of correct attribution can be
identified from both experimental and nonexperimental data.

8.4 A TEST FOR INSTRUMENTS

As defined in Section 8.2, our model of imperfect experiment rests on two assumptions:
Z is randomized, and Z has no side effect on Y. These two assumptions imply that Z is
independent of U, a condition that economists call “exogeneity” and which qualifies Z
as an instrumental variable (see Sections 5.4.3 and 7.4.5) relative to the relation between
X and Y. For a long time, experimental verification of whether a variable Z is exogenous
or instrumental has been thought to be impossible (Imbens and Angrist 1994), since the
definition involves unobservable factors (or disturbances, as they are usually called) such
as those represented by U.% The notion of exogeneity, like that of causation itself, has
been viewed as a product of subjective modeling judgment, exempt from the scrutiny of
nonexperimental data.

The bounds presented in (8.14a,b) tell a different story. Despite its elusive nature,
exogeneity can be given an empirical test. The test is not guaranteed to detect all viola-
tions of exogeneity, but it can (in certain circumstances) screen out very bad would-be
instruments.

By insisting that each upper bound in (8.14b) be higher than the corresponding lower
bound in (8.14a), we obtain the following testable constraints on the observed distribution:

P(yg, x| z0) + P(y1. xp| 21} = 1,
P(yp, x1|20) + POy xy [2) = 1,
P(yy, xp|20) + P(yp, xo|21) = 1,
Py, x1 1 29) + P(yp, x; |2 = L.

(8.21)

If any of these inequalities is violated, the investigator can deduce that at least one of the
assumptions underlying our model is violated as well, If the assignment is carefully
randomized, then any violation of these inequalities must be attributed to some direct
influence that the assignment process has on subjects’ responses (e.g., a traumatic ex-
perience). Alternatively, if direct effects of Z on Y can be eliminated — say, through an
effective use of a placebo — then any observed violation of the inequalities can safely
be attributed to spurious correlation between Z and U: namely, to assignment bias and
hence loss of exogeneity. Richardson and Robing € 2.010F diccuss the
power of these testep

The Instrumental Inequality

The inequalities in (8.21), when generalized to multivalued variables, assume the form

max > [max P(y,x|2)] =1, (8.22)
y zZ

6 The tests developed by economists (Wu 1973) merely compare estimates based on two or more
instruments and, in case of discrepency, do not tell us objectively which estimate is incorrect.
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constraints on the contingencies were too liberal. This led to a further refinement (Halpern
and Pear] 2005a,b) and to the definition given below:

Definition 10.4.2 (Actual Causation) (Halpern and Pearl 2005)
X = x is an actual cause of Y = y in a world U = u if the following three conditions
hold:

ACL X(w)=x, Yy =1y

AC2. There is a partition of V into two subsets, Z and W, with X © Z and a setting
x" and w of the variables in X and W, respectively, such that if Z(u) = z¥, then
both of the following conditions hold.

(@ Yy, #y

(b) Yy .+ = yfor all subsets W' of W and all subsets Z' of Z, with the set-
ting w of W' and z¥ of Z' equal to the setting of those variables in W = w
and Z = z*, respectively.

AC3. W is minimal; no subset of X satisfies conditions AC1 and AC2.

The assignment W = w acts as a contingency against which X = x is given the counter-
factual test, as expressed in AC2(a).

AC2 (b) limits the choice of contingencies. Roughly speaking, it says that if the vari-
ables in X are reset to their original values, then ¥ = y must hold, even under the con-
tingency W = w and even if some variables in Z are given their original values (i.e., the
values in z*).

In the case of the voting machine, if we identify W = w with V, = 0, and Z = z*
with V| = 1, we see that V; = 1 qualifies as a cause under AC2; we no longer require that
M remains invariant to the contingency V, = 0; the invariance of ¥ = 1 suffices.

This definition, though it correctly solves most problems posed in the literature
(Hiddleston 2005; Hall 2007; Hitchcock 2007, 2008), still suffers from one deficiency;
it must rule out certain contingencies as unreasonable. Halpern (2008) has offered a
solution to this problem by appealing to the notion of “normality” in default logic
(Spohn 1988; Kraus et al. 1990; Pearl 1990b); only those contingencies should be
considered which are at the same level of “normality” as their counterparts in the actual
world.

H'alpem and Ritcheock £2010F Summarize +ht state.

of 4he art of the structural arprogah +o ac:fual _
ciusa—{'.'on A fnd diseuss its sensifivity 1o choice of vdriabless
J
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Figure 11.1 A graph containing a

x-—-——h—r = g “[‘ U — Y ——p "
collider at ¢,

While this harsh verdict may condemn valuable articles in the empirical literature to
the province of inadequacy, it can save investigators endless hours of confusion and
argumentation in deciding whether causal claims from one study are relevant to another.
More importantly, the verdict should encourage investigators to visibly explicate causal
premises, so that they can be communicated unambiguously to other investigators and
invite professional scrutiny, deliberation, and refinement.

11.1.2  d-Separation without Tears (Chapter 1, pp. 16-18)

At the request of many who have had difficulties switching from algebraic to graphical
thinking, I am including a gentle introduction to d-separation, supplementing the formal
definition given in Chapter 1, pp. 1618, £ See also Hﬂ\[duk et a[@ 2.00 ?’CD ?1

Introduction

d-separation is a criterion for deciding, from a given causal graph, whether a set X of
variables is independent of another set Y, given a third set Z, The idea is to associate
“dependence” with “connectedness” (i.e., the existence of a connecting path) and “inde-
pendence” with “unconnectedness” or “separation.” The only twist on this simple idea
is to define what we mean by “connecting path,” given that we are dealing with a sys-
tem of directed arrows in which some vertices (those residing in Z) correspond to meas-
ured variables, whose values are known precisely. To account for the orientations of the
arrows we use the terms “d-separated” and “d-connected” (d connotes “directional’). We
start by considering separation between two singleton variables, x and y; the extension
to sets of variables is straightforward (i.e., two sets are separated if and only if each ele-
ment in one set is separated from every element in the other).

Unconditional Separation

Rule I: x and y are d-connected if there is an unblocked path between them.

By a “path” we mean any consecutive sequence of edges, disregarding their directional-
ities. By “unblocked path” we mean a path that can be traced without traversing a pair
of arrows that collide “head-to-head.” In other words, arrows that meet head-to-head do
not constitute a connection for the purpose of passing information; such a meeting will
be called a “collider.”

Example 11.1.1 The graph in Figure 11.1 contains one collider, at r. The path
x—r—s—tis unblocked, hence x and t are d-connected. So also is the path ¢t —u —v —
¥, hence t and y are d-connected, as well as the pairs u and y, ¢ and v, ¢ and u, x and s,
etc. However, x and y are not d-connected; there is no way of tracing a path from x
to y without traversing the collider at r. Therefore, we conclude that x and y are
d-separated, as well as x and v, s and i, r and «, etc. (In linear models, the ramifica-
tion is that the covariance terms corresponding to these pairs of variables will be
zero, for every choice of model parameters.)
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Typical application: Consider Example 11.1.3. Suppose we form the regression of
yonp,r,and x,

Yy =cp t+ eaf + c3x + €,

and wish to predict which coefficient in this regression is zero. From the discus-
sion above we can conclude immediately that c3 is zero, because y and x are d-
separated given p and r, hence y is independent of x given p and r, or, x cannot
offer any information about y once we know p and r. (Formally, the partial corre-
lation between y and x, conditioned on p and r, must vanish.) ¢; and ¢, on the other
hand, will in general not be zero, as can be seen from the graph: Z = {r, x} does not
d-separate y from p, and Z = {p, x} does not d-separate y from r.

Remark on correlated errors: Correlated exogenous variables (or error terms) need no
special treatment. These are represented by bi-directed arcs (double-arrowed), and
their arrowheads are treated as any other arrowheads for the purpose of path tracing.
For example, if we add to the graph in Figure 11.3 a bi-directed ar¢ between x and ¢,
then y and x will no longer be d-separated (by Z = {r, p}), because the path x — 7 —
u—v —Yy is d-connected — the collider at 7 is unblocked by virtue of having a descen-
dant, p, in Z.

11.2 REVERSING STATISTICAL TIME (CHAPTER 2, pp. 58-59)

Question to Author:

Keith Markus requested a general method of achieving time reversal by changing coor-
dinate systems or, in the specific example of equation (2.3), a general method of solving
for the parameters a, b, ¢, and d to make the statistical time run opposite to the physical
time (p. 59).

Author’s Reply:

Consider any two time-dependent variables X(7) and ¥(¢). These may represent the posi-
tion of two particles in one dimension, temperature and pressure, sales and advertising
budget, and so on,

Assume that temporal variation of X(¢) and Y(¢) is governed by the equations:

X =aX(t— 1)+ LY — 1) + €®

(11.1)
Y() = yX(t — 1) + 8Y( — 1) + n(),

with €(r) and 7p(¢f) being mutually and serially uncorrelated noise terms.

In this coordinate system, we find that the two components of the current state, X(£)
and Y(¢), are uncorrelated conditioned on the components of the previous state, X(t — 1)
and Y(r — 1). Simultaneously, the components of the current state, X(¢) and Y(¢), are cor-
related conditioned on the components of the future state, X(z + 1) and Y(s + 1). Thus,
according to Definition 2.8.1 (p. 58), the statistical time coincides with the physical time.

Now let us rotate the coordinates using the transformation

X'() = aX(t) + bY(9)

(11.2)
Y'(£) = eX(1) + dY ().
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€p €1 € 5] €4
Figure 11.4 Showing the noise factors on the
path from X to Y.
X o S] =8 SZ o S3 e Y
€9 € ) €3 €4
l l ] l J Figure 11.5 Conditioning on Z creates
dependence between X and ey, which biases the
Si = 5 53 Y estimated effect of X on Y.
Z
Author’s Answer:

The exclusion of descendants from the back-door criterion is indeed based on first prin-

ciples, in terms of the goal of removing bias. The principles are as follows: We wish to i

measure a certain quantity (causal effect) and, instead, we measure a dependenc l 190 he‘lv‘{
that results from all the paths in the diagram; some are spurious (the back-door paths), B

and some are genuinely causal (the directed paths from X to ¥). Thus, to remove bias,

we need to modify the measured dependency and make it equal to the desired quantity.

To do this systematically, we condition on a set Z of variables while ensuring that:

1. We block all spurious paths from X to ¥,
2. We leave all directed paths unperturbed,

3. We create no new spurious paths.

Principles 1 and 2 are accomplished by blocking all back-door paths and only those
paths, as articulated in condition (ii). Principle 3 requires that we do not condition on
descendants of X, even those that do not block directed paths, because such descendants
may create new spurious paths between X and Y. To see why, consider the graph

X——)Sl —)SZ'—>S3—>Y.
The intermediate variables, Sy, Ss,..., (as well as Y) are affected by noise factors e, ¢,
ey,. . . which are not shown explicitly in the diagram. However, under magnification, the
chain unfolds into the graph in Figure 11.4.
Now imagine that we condition on a descendant Z of §; as shown in Figure 11.5.
Sinde Sy is a collider, this creates dependency between X and e; which ﬂveqm-te-a':\/ acts (ike a
back-door path

X > € —>S] —)Sz'—>S3—)Y,
fhey
By principle 3, such paths should not be created, for-i(introduce{spurious dependence )/A
between X and Y.
Note that a descendant Z of X that is not also a descendant of some Syescapes this
exclusion; it can safely be conditioned on without introducing bias (though it may :€0(" some ei{,‘-

decrease the efficiency of the associated estimator of the causal effect of X on ¥). Section f, > 0 j;
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11.3.3 provides an alternative proof of the back-door criterion where the need to exclude
descendants of X is even more transparent.

It is also important to note that the danger of creating new bias by adjusting for
wrong variables can threaten randomized trials as well. In such trials, investigators may
wish to adjust for covariates despite the fact that, asymptotically, randomization neu-
tralizes both measured and unmeasured confounders. Adjustment may be sought either
to improve precision (Cox 1958, pp. 48-55), or to match imbalanced samples, or to
obtain covariate-specific causal effects. Randomized trials are immune to adjustment-
induced bias when adjustment is restricted to pre-treatment covariates, but adjustment
for post-treatment variables may induce bias by the mechanism shown in Figure 11,5 or,
more severely, when correlation exists between the adjusted variable Z and some factor
that affects outcome (e.g., e, in Figure 11.5).

As an example, suppose treatment has a side effect (e.g., headache) in patients who
are predisposed to disease Y. If we wish to adjust for disposition and adjust instead for
its proxy, headache, a bias would emerge through the spurious path: treatment —
headache < predisposition — disease. However, if we are careful never to adjust for amy™

consequence,of treatment (not only those that are on the causal pathway to disease), no
bias will emerge in random . 4

. that open Such spurtous paths
Further Questions from This Reader:

This explanation for excluding descendants of X is reasonable, but it has two short-
comings: . ’

1. Tt does not address cases such as 3
X« C—>Y—>F,

which occur frequently in epidemiology, and where tradition permits the adjust-
ment for Z = {C, F}.

2. The explanation seems to redefine confounding and sufficiency to represent
something different from what they have meant to epidemiologists in the past
few decades. Can we find something in graph theory that is closer to their tradi-
tional meaning?

Author’s Answer

1. Epidemiological tradition permits the adjustment for Z = (C, F) for the task of
testing whether X has a causal effect on ¥, but not for estimating the magnitude
of that effect. In the former case, while conditioning on F creates a spurious path
between C and the noise factor affecting Y, that path is blocked upon condition-
ing on C. Thus, conditioning on Z = {C, F} leaves X and Y independent. If we
happen to measure such dependence in any stratum of Z, it must be that the
model is wrong, i.e., either there is a direct causal effect of X on ¥, or some other
paths exist that are not shown in the graph.

Thus, if we wish to test the (null) hypothesis that there is no causal effect of X
on Y, adjusting for Z = {C, F} is perfectly legitimate, and the graph shows it
(i.e., C and F are nondescendant of X). However, adjusting for Z is not legiti-
mate for assessing the causal effect of X on ¥ when such effect is suspected,
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useful conclusion: Whenever a set of covariates Z exists that satisfies the back-door
criterion, ETT can be estimated from observational studies. This follows directly from

Y LX[Dg, = Yy LLX|Z,

which allows us to write
ETT = P(Yy = y|)
=X, Py =y

=>, P(Yy =y|x,2)P(z|x)

X aP(z] %)

= 22 Py 2", IIPE [=]).

The graphical demystification of “strong ignorability™ also helps explain why the prob-
ability of causation P(Y,» = y'|x,y) and, in fact, any counterfactual expression condi-
tioned on y, would not permit such a derivation and is, in general, non-identifiable (see

Chapter 9%, and Shpitser and Pear| 200% ¥o

11.3.3 Alternative Proof of the Back-Door Criterion

The original proof of the back-door criterion (Theorem 3.3.2) used an auxiliary inter-
vention node F (Figure 3.2) and was rather indirect. An alternative proof is presented
below, where the need for restricting Z to nondescendants of X is transparent.

Proof of the Back-Door Criterion

Consider a Markovian model G in which T stands for the set of parents of X. From equa-
tion (3.13), we know that the causal effect of X on'Y is given by

Py %) = D PO |x. DP@). (11.6)
teT

Now assume some members of T are unobserved. We seek another set Z of observed
variables, to replace T so that

P(y|3) = EZP@ [ 2P (11.7)
zE

It is easily verified that (11.7) follow from (11.6) if Z satisfies:
(i) (Y1 T | X, Z)
(i) (X1 Z|T).

Indeed, conditioning on Z, (i) permits us to rewrite (11.6) as
Py|%) = 2 PM) X P(y|zXPz |1, %),
t z

and (ii) further yields P(z | ¢, x) = P(z | £), from which (11.7) follows.

It is now a purely graphical exercise to prove that the back-door criterion implies (i)
and (ii). Indeed, (ii) follows directly from the fact that Z consists of nondescendants of X,
while the blockage of all back-door paths by Z implies (Y 1LT | X, Z)s, hence (i). This
follows from observing that any path from Y to T in G that is unblocked by {X, Z} can
be extended to a back-door path from ¥ to X, unblocked by Z.
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S, = {Z,, W5} is admissible (by virtue of satisfying the back-door criterion), hence §;
and S, are c-equivalent. Yet neither C; nor C, holds in this case.

A natural attempt would be to impose the condition that §; and §, each be c-equiva-
lent to Sy U S, and invoke the criterion of Stone (1993) and Robins (1997) for the
required set-subset equivalence. The resulting criterion, while valid, is still not complete;
there are cases where §; and S, are c-equivalent yet not c-equivalent to their union. A
theorem by Pearl and Paz (2008) broadens this condition using irreducible sets.

Having given a conditional-independence characterization of c-equivalence does not
solve, of course, the problem of identifying admissible sets; the latter is a causal notion
and cannot be given statistical characterization.

The graph depicted in Figure 11.8(b) demonstrates the difficulties commonly faced
by social and health scientists. Suppose our target is to estimate P(y |do(x)) given
measurements on {X, ¥, Z, Z,, W1, W5, V}, but having no idea of the underlying graph
structure. The conventional wisdom is to start with all available covariates C = {Z,, Z,,
Wy, Wy, V}, and test if a proper subset of C would yield an equivalent estimand upon
adjustment. Statistical methods for such reducti i in_Greenland

r (1999b), Geng/et al. (2002), and Wa(;if et al. (ZOOSZ For example, {Zf,

} can be removed from C by sticcessively
ethod would produce thrge irreducible/subsets, {Z;, W,
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/11 the data at hand, can be /brought to bear on the problem. /
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__X (e.g., it may occur /ater than X,) or that W, could uot possibly have direct effect on Y.
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which/all conditfonal independgncies emanate from gféph gepzirations.

1.9 is indistinguishable from that of Fig-
ure 11.8(p), in that it satisfies all the conditi9r'1al independencies implied by the latter, and
no othe;é.ﬁ However, in,éontrast to Figure ¥1.8(b), the sets {Z;, W), Wy}, {V, W,

{Z,, Wy, Wy} are admiséible. Adjusting f91{ the laiter would remove bias if the cofrect model
is F}éure 11.9 and mright produce bias )-f the correct model is F}i);ure 11.8(b){./

Is there a way/of telling the two,models apart? Althougﬁ the notion of “observational

uivalence” prgcludes discrimin {on by statistical means, substantive gausal knowlgdge
ay provide discriminating information. For example,/the model of Figure 11.9 be
ruled out if vj: have good reaso;éiz believe that variable W, cannot have any influence on
_ tp
e ]')Gﬁ':ér(;f graphs lies in offering investigators a transparent language to reason
about, to discuss the plausibility of such assumptions and, when consensus is not reached,
to isolate differences of opinion and identify what additional observations would be needed
to resolve differences. This facility is lacking in the potential-outcome approach where, for
most investigators, “strong ignorability” remains a mystical black box.

In addition to serving as carriers of substantive judgments, graphs also offer one the
ability to reject large classes of models without testing each member of the class. For
example, all models in which V and W, are the sole parents of X, thus rendering {V, W}
(as well as C) admissible, could be rejected at once if the condition X 11 Z, | V, W; does
not hold in the data.

In Chapter 3, for example, we demonstrated how the measurement of an additional
variable, mediating between X and Y, was sufficient for identifying the causal effect of
X on Y. This facility can also be demonstrated in Figure 11.8(b); measurement of a vari-
able Z judged to be on the pathway between X and Y would render P(y | do(x)) identifi-
able and estimable through equation (3.29). This is predicated, of course, on Fig-
ure 11.8(b) being the correct data-generating model. If, on the other hand, it is Figure 11.9
that represents the correct model, the causal effect would be given by

P(y |do(x)) = 3, ,, PO| pay, »)P(pay)

o 221, Wl.WZP(y

X, 21, Wi, W2) P(Zl, Wi, Wz),

6 Semi-Markovian models may also be distinguished by functional relationships that are not
expressible as conditional independencies (Verma and Pear] 1990; Tian and Pearl 2002b; Shpitser
and Pearl 2008). We do not consider these useful constraints in this example.
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S, = {Z,, W,} is admissible (by virtue of satisfying the back-door criterion), hence S
and S, are c-equivalent. Yet neither Cy nor C; holds in this case.

A natural attempt would be to impose the condition that §; and S, each be c-equiva-
lent to S; U S5 and invoke the criterion of Stone (1993) and Robins (1997) for the
required set-subset equivalence. The resulting criterion, while valid, is still not complete;
there are cases where S, and S, are c-equivalent yet not c-equivalent to their union. A
theorem by Pearl and Paz (2008) broadens this condition using irreducible sets.

Having given a conditional-independence characterization of c-equivalence does not
solve, of course, the problem of identifying admissible sets; the latter is a causal notion
and cannot be given statistical characterization.

The graph depicted in Figure 11.8(b) demonstrates the difficulties commonly faced
by social and health scientists. Suppose our target is to estimate P(y | do(x)) given
measurements on {X, Y, Z;, Z,, Wy, W, V}, but having no idea of the underlying graph
structure. The conventional wisdom is to start with all available covariates C' = {24, Z,,
Wy, W, V}, and test if a proper subset of C would yield an equivalent estimand upon
adjustment. Statistical methods for such reduction are described in Greenland et al.
(1999b), Geng et al. (2002), and Wang et al. (2008). For example, V and Z, can be
removed from C by successively applying conditions C; and C,, thus producing an
irreducible subset, {Z;, W;, W}, c-equivalent to the original covariate set C. However,
this subset is inadmissible for adjustment because, like C, it does not satisfy the back-
door criterion. While a theorem due to Tian et al. (1998) assures us that any c-equivalent
subset of a set C can be reached from C by a step-at-a-time removal method, going
through a sequence of c-equivalent subsets, the problem of covariate selection is that,
lacking the graph structure, we do not know which (if any) of the many subsets of C
is admissible. The next subsection discusses how external knowledge, as well as more
refined analysis of the data at hand, can be brought to bear on the problem.

11.3.4 Data vs. Knowledge in Covariate Selection

What then can be done in the absence of a causal graph? One way is to postulate a
plausible graph, based on one’s understanding of the domain, and check if the data refutes
any of the statistical claims implied by that graph. In our case, the graph of Figure
11.8(b) advertises several such claims, cast as conditional independence constraints, each
associated with a missing arrow in the graph:

\7is {Wl, W'Z} X AL {V’ ZZ}’{ZI’ WQ’ WI}
7, U Wy WV, Wiy VAL Y|{X, 2, Wy, Zy, W)
7, 1L (W), Zy, XYV, W) VAL Y|{Zy, Wy, Zy, W)

Satisfying these constraints does not establish, of course, the validity of the causal
model postulated because, as we have seen in Chapter 2, alternative models may exist
which satisfy the same independence constraints yet embody markedly different causal
structures, hence, markedly different admissible sets and effect estimands. A trivial
example would be a complete graph, with arbitrary orientation of arrows which, with a
clever choice of parameters, can emulate any other graph. A less trivial example, one
that is not sensitive to choice of parameters, lies in the class of equivalent structures, in
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Figure 11.9 A model that is almost indistinguishable
from that of Figure 11.8(b), save for advertising one
additional independency Z; 1L Y|X, W, W,, Z,. It deems

Z7  three sets to be admissible (hence c-equivalent):
{V, WI’ W?.}’ {Zl’ WI’ Vv’z}, and {Wl’ W’z, Zz}, and
would be rejected therefore if any pair of them fails the
c-equivalence test.

which all conditional independencies emanate from graph separations. The search tech-
niques developed in Chapter 2 provide systematic ways of representing all equivalent
models compatible with a given set of conditional independence relations.

The model depicted in Figure 11.9 is a tough contender to that of Figure 11.8(b);
it satisfies all the conditional independencies implied by the latter, plus one more:
7y 1LY|X, Wy, Wy, Z,, which is not easy to detect or test. Yet, contrary to Figure 11.8(b),
it deems three sets {Z1, Wy, Wol, {V, Wy, Wa}, and {Z,, Wy, W5} to be admissible, hence
c-equivalent; testing for the c-equivalence of the three sets should decide between the two
contesting models.

Substantive causal knowledge may provide valuable information for such decisions.
For example, the model of Figure 11.9 can be ruled out if we have good reasons to
believe that variable W, cannot have any influence on X (e.g., it may occur later than X),
or that W could not possibly have direct effect on Y.

The power of graphs lies in offering investigators a transparent language to reason
about, to discuss the plausibility of such assumptions and, when consensus is not reached,
to isolate differences of opinion and identify what additional observations would be needed
to resolve differences. This facility is lacking in the potential-outcome approach where, for
most investigators, “strong ignorability” remains a mystical black box.

In addition to serving as carriers of substantive judgments, graphs also offer one the
ability to reject large classes of models without testing each member of the class. For
example, all models in which V and W, are the sole parents of X, thus rendering {V, Wy}
(as well as C) admissible, could be rejected at once if the condition X 1L Z, | V, Wy does
not hold in the data.

In Chapter 3, for example, we demonstrated how the measurement of an additional
variable, mediating between X and Y, was sufficient for identifying the causal effect of
X on Y. This facility can also be demonstrated in Figure 11.8(b); measurement of a vari-
able Z judged to be on the pathway between X and ¥ would render P(y | do(x)) identifi-
able and estimable through equation (3.29). This is predicated, of course, on Fig-
ure 11.8(b) being the correct data-generating model. If, on the other hand, it is Figure 11.9
that represents the correct model, the causal effect would be given by

P(y | do(x)) = X, PG| pax. x)P(pax)

= 2wy w PO 30 21, Wi wo) P2y, Wi, wo),

6 Semi-Markovian models may also be distinguished by functional relationships that are not
expressible as conditional independencies (Verma and Pearl 1990; Tian and Pearl 2002b; Shpitser
and Pearl 2008). We do not consider these useful constraints in this example.
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The Controversy Surrounding Propensity Score

Thus far, our presentation of propensity score leaves no room for misunderstanding, and
readers of this book would find it hard to understand how a controversy could emerge
from an innocent estimation method which merely offers an efficient way of estimating
a statistical quantity that sometimes does, and sometimes does not, coincide with the
causal quantity of interest, depending on the choice of §.

But a controversy has developed recently, most likely due to the increased populari-
ty of the method and the strong endorsement it received from prominent statisticians
(Rubin 2007), social scientists (Morgan and Winship 2007; Berk and de Leeuw 1999),
health scientists (Austin 2007), and economists (Heckman 1992), The popularity of the
method has in fact grown to the point where some federal agencies now expect program
evaluators to use this approach as a substitute for experimental designs (Peikes et al,
2008). This move reflects a general tendency among investigators to play down the cau-
tionary note concerning the required admissibility of S, and to interpret the mathemati-
cal proof of Rosenbaum and Rubin as a guarantee that, in each strata of L, matching
treated and untreated subjects somehow eliminates confounding from the data and con-
tributes therefore to overall bias reduction. This tendency was further reinforced by
empirical studies (Heckman et al. 1998; Dehejia and Wahba 1999) in which agreement
was found between propensity score analysis and randomized trials, and in which the
agreement was attributed to the ability of the former to “balance” treatment and control
groups on important characteristics. Rubin has encouraged such interpretations by stat-
ing: “This application uses propensity score methods to create subgroups of treated units
and control units ... as if they had been randomized. The collection of these subgroups
then ‘approximate’ a randomized block experiment with respect to the observed covari-
ates” (Rubin 2007).

Subsequent empirical studies, however, have taken a more critical view of propensity
score, noting with disappointment that a substantial bias is sometimes measured when
careful comparisons are made to results of clinical studies (Smith and Todd 2005;
Luellen et al. 2005; Peikes et al, 2008).

But why would anyone play down the cautionary note of Rosenbaum and Rubin
when doing so would violate the golden rule of causal analysis: No causal claim can be
established by a purely statistical method, be it propensity scores, regression, stratifica-
tion, or any other distribution-based design. The answer, I believe, rests with the lan-
guage that Rosenbaum and Rubin used to formulate the condition of admissibility, i.e.,
equation (11.11). The condition was articulated in the aerrieictfganguage of potential-
outcome, stating that the set S must render X “strongly ignorable,” i.e., {Y}, Yo} 1L X | S.
As stated several times in this book, the opacity of “ignorability” is the Achilles’ heel of
the potential-outcome approach — no mortal can apply this condition to judge whether it
holds even in simple problems, with all causal relationships correctly specified, let alone
in partially specified problems that involve dozens of variables.'°

10" Advocates of the potential outcome tradition are invited to inspect Figure 11.8(b) (or any model,
or story, or toy-example of their choice) and judge whether any subset of C renders X “strongly
ignorable.” This could easily be determined, of course, by the back-door criterion, but, unfortu-
nately, graphs are still feared and misunderstood by some of the chief advocates of the potential-
outcome camp (e.g., Rubin 2004, 2008b, 2009).

)/Aor?rp‘ﬁc,
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The difficulty that most investigators experience in comprehending what “ignorability”
means, and what judgment it summons them to exercise, has tempted them to assume
that it is automatically satisfied, or at least is likely to be satisfied, if one includes in the
analysis as many covariates as possible. The prevailing attitude is that adding more covari-
ates can cause no harm (Rosenbaum 2002, p. 76) and can absolve one from thinking about
the causal relationships among those covariates, the treatment, the outcome and, most
importantly, the confounders left unmeasured (Rubin 2009).

This attitude stands contrary to what students of graphical models have learned, and
what this book has attempted to teach. The admissibility of § can be established only by
appealing to the causal knowledge available to the investigator, and that knowledge, as
we know from graph theory and the back-door criterion, makes bias reduction a non-
monotonic operation, i.e., eliminating bias (or imbalance) due to one confounder may
awaken and unleash bias due to dormant, unmeasured confounders. Examples abound
(e.g., Figure 6.3) where adding a variable to the analysis t
would introduce irreparable bias (Pearl MShrler 2009, Sjolander 2009), —————~— 2009b A 2.0(0q 4

Another factor inflaming the controversy has been the general belief that the bias-
reducing potential of propensity score methods can be assessed experimentally by running
case studies and comparing effect estimates obtained by propensity scores to those
obtained by controlled randomized experiments (Shadish and Cook 2009).!! This belief
is unjustified because the bias-reducing potential of propensity scores depends critically
on the specific choice of § or, more accurately, on the cause—effect relationships among
variables inside and outside §. Measuring significant bias in one problem instance
(say, an educational program in Oklahoma) does not preclude finding zero bias in
another (say, crime control in Arkansas), even under identical statistical distributions
P(x, s, y).

With these considerations in mind, one is justified in asking a social science type
question: What is it about propensity scores that has inhibited a more general under-
standing of their promise and limitations?

Richard Berk, in Regression Analysis: A Constructive Critique (Berk 2004), recalls
similar phenomena in social science, where immaculate ideas were misinterpreted by
the scientific community: “I recall a conversation with Don Campbell in which he
openly wished that he had never written Campbell and Stanley (1966). The intent of the
justly famous book, Experimental and Quasi-Experimental Designs for Research, was
to contrast randomized experiments to quasi-experimental approximations and to
strongly discourage the latter. Yet the apparent impact of the book was to legitimize a
host of quasi-experimental designs for a wide variety of applied social science. After I
got to know Dudley Duncan late in his career, he said that he often thought that his
influential book on path analysis, Introduction to Structural Equation Models was a
big mistake. Researchers had come away from the book believing that fundamental pol-
icy questions about social inequality could be quickly and easily answered with path
analysis.” (p. xvii)

1 Such beliefs are encouraged by valiant statements such as: “For dramatic evidence that such an
analysis can reach the same conclusion as an exactly parallel randomized experiment, see Shadish
and Clark (2006, unpublished)” (Rubin 2007).
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a b Figure 11,13 Demonstrating an indirect effect of X on ¥ via Z.

After chewing on this for a second, the student asked the following:

Student: “The interpretation of the b path is: b is the increase we would see in Y
given a unit increase in Z while holding X fixed, right?”

Me: “That’s right.”

Student: “Then what is being held constant when we interpret an indirect effect?”

Me: “Not sure what you mean.”

Student: “You said the interpretation of the indirect effect ab is: ab is the increase
we would see in Y given a one unit increase in X through its causal effect on Z. But since b
(the direct effect from Z to Y) requires X to be held constant, how can it be used in a cal-
culation that is also requiring X to change one unit.”

Me: “Hmm. Very good question. I'm not sure I have a good answer for you. In the
case where the direct path from X to Y is zero, I think we have no problem, since the rela-
tionship between Z and Y then has nothing to do with X. But you are right, here if “c” is
nonzero then we must interpret b as the effect of Z on ¥ when X is held constant. I under-
stand that this sounds like it conflicts with the interpretation of the @b indirect effect,
where we are examining what a change in X will cause. How about I get back to you. As
I have told you before, the calculations here aren’t hard, its trying to truly understand
what your model means that’s hard.”

Author’s Reply:
Commend your student on his/her inquisitive mind. The answer can be formulated rather
simply (see Section 4.5.5, which was appended to the second edition):

The indirect effect of X on Y is the increase we would see in ¥ while holding X con-
stant and increasing Z to whatever value Z would attain under a unit increase of X.

C1C finitiof of b (thg direct effect of Z on Y)does nét “require X {0 be
; it requires mderely that the incyease in Z be produced by intepventioh, an
ot in rfesponse tg other Yariationy/in the system. Sge discussion 4n p. 97 and gquatign

Author’s Afterthought:

This question represents one of several areas where standard education in structural equa-
tion models (SEM) can stand reform. While some SEM textbooks give a cursory mention
of the interpretation of structural parameters as effect coefficients, this interpretation is not
taken very seriously by authors, teachers, and students. Writing in 2008, I find that the bulk
of SEM education still focuses on techniques of statistical estimation and model fitting, and

This countetfactual definition leads 4o+he Mediation Formule {40(39;
which extends path analysis to nonlinear models and enables uc v v
A ndirect efects for ca‘rejor-c.ai varjables using or dinary

(eg ression O
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was led to the results of Sections 4.5.4 and 4.5.5, some already anticipated by Robins

. and Greenland (1992)4Enlightened by these results, I was compelled and delighted to

4—; d 4o s retract an earlier statement made on page 165 of the first edition of Causality: “indirect
effects lack intrinsic operational meaning” because they cannot be isolated using the

M‘edfd‘f;bn ﬁrmula do(x) operator. While it is true that indirect effects cannot be isolated using the do(x)

Q’F eﬂ uatfons operator, they do possess intrinsic operational meaning, Policy-making implications

of direct and indirect effects are further exemplified in Pearl (2001) and Petersen et al,

£ 4! 23,€4p! 33, 2006). o 2000b
and €483 o ’

11.4.3 Can do(x) Represent Practical Experiments?
Question to Author:

L.B.S., from the University of Arizona, questioned whether the do(x) operator can rep-
resent realistic actions or experiments: “Even an otherwise perfectly executed ran-
domized experiment may yield perfectly misleading conclusions. A good example is
a study involving injected vitamin E as a treatment for incubated children at risk for
retrolental fibroplasia. The randomized experiment indicated efficacy for the injec-
tions, but it was soon discovered that the actual effective treatment was opening the
pressurized, oxygen-saturated incubators several times per day to give the injections,
thus lowering the barometric pressure and oxygen levels in the blood of the infants
(Leonard, Major Medical Mistakes). Any statistical analysis would have been mis-
leading in that case.”

S.M., from Georgia Institute of Technology, adds:

“Your example of the misleading causal effect shows the kind of thing that troubles
me about the do(x) concept. You do(x) or don’t do(x), but it may be something else that
covaries with do(x) that is the cause and not the do(x) per se.”

Author’s Reply:

Mathematics deals with ideal situations, and it is the experimenter’s job to make sure
that the experimental conditions approximate the mathematical ideal as closely as pos-
sible. The do(x) operator stands for doing X = x in an ideal experiment, where X and X
alone is manipulatedg not any other variable in the model.

In your example of the vitamin E injection, there is another variable being manipu-
lated together with X, namely, the incubator cover, Z, which turns the experiment into a
do(x, z) condition instead of do(x). Thus, the experiment was far from i and far even
from the standard experimental protocol, which requires the use of a placebo. Had a
placebo been used (to approximate the requirement of the do(x) operator), the result
would not have been biased.

There is no way a model can predict the effect of an action unless one specifies what
A ife UH"{ variables in the model ar%ffected by the action, and how. The do(x) operator is a math-

ematical device that helps us specify Wormally what is held constant, and
what is free to vary in any given experiment. The do-calculus then helps us predict the
logical ramifications of such specifications, assuming they are executed faithfully,
assuming we have a valid causal model of the environment, and assuming we have data

from other experiments conducted under well-specified conditions. See Se&[’ioh [(@ A—@ (p ()]

difco-f‘{y,f —

+he ot
in«l‘f«ndedﬁ.
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11.4.4 Is the do(x) Operator Universal?
Question to Author (from Bill Shipley)

In most experiments, the external manipulation consists of adding (or subtracting) some
amount from X without removing preexisting causes of X. For example, adding 5 kg/h
of fertilizer to a field, adding 5 mg/l of insulin to subjects, etc. Here, the preexisting
causes of the manipulated variable still exert effects, but a new variable (M) is added.

The problem that I see with the do(x) operator as a general operator of external
manipulation is that it requires two things: (1) removing any preexisting causes of x and
(2) setting x to some value. This corresponds to some types of external manipulation, but
not to all (or even most) external manipulations. I would introduce an add(x = n) opera-
tor, meaning “add, external to the preexisting causal process, an amount ‘n’ to x.”
Graphically, this consists of augmenting the preexisting causal graph with a new edge,
namely, M — n—X. Algebraically, this would consist of adding a new term -n- as a
cause of X (Shipley 2000b).

Author’s Answer:

In many cases, your “additive intervention” indeed represents the only way we can inter-
vene on a variable X; in others, it may represent the actual policy we wish evaluated, In
fact, the general notion of intervention (p. 113) permits us to replace the equation of X
by any other equation that fits the circumstances, not necessarily a constant X = x.

What you are proposing corresponds to replacing the old equation of X, x = f(pay),
with a new equation: x = f(pay) + n. This replacement can be represented using “instru-
mental variables,” since it is equivalent to writing x = f(paX) + I (where [ is an instru-
ment) and varying / from 0 to .

There are three points to notice:

1.

The additive manipulation can be represented in the do( ) framework — we merely
apply the do( ) operator to the instrument /, and not to X itself. This is a differ-
ent kind of manipulation that needs to be distinguished from do(x) because, as
is shown below, the effect on ¥ may be different.

In many cases, scientists are not satisfied with estimating the effect of the instru-
ment on Y, but are trying hard to estimate the effect of X itself, which is often
more meaningful or more transportable to other situations. (See p. 261 for dis-

cussion of the effect of “intention to trcat”.’-)”ﬂcnd 1 0] 469 ‘For an emmpfeo ?’

Consider the nonrecursive example where LISREL fails y = bx + ¢y + [,x =
ay + ey, (p. 164). If we interpret “total effects” as the response of Y to a unit
change of the instrument /, then LISREL’s formula obtains: The effect of fon Y
is b/(1 — ab). However, if we adhere to the notion of “per unit change in X,” we
get back the do-formula: The effect of X on Y is b, not b/(1 — ab), even though
the manipulation is done through an instrument. In other words, we change 7
from O to 1 and observe the changes in X and in Y; if we divide the change in Y
by the change in X, we get b, not b/(1 — ab).

To summarize: Yes, additive manipulation is sometimes what we need to model, and
it can be done in the do(x) framework using instrumental variables. We still need to
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distinguish, though, between the effect of the instrument and the effect of X. The former
is not stable (p. 261), the latter is.

instrument,-not-to-the-effect of X— Sh pitser and Pear| £ 2004 F provid cessa
@ and sufficient graphical t:md"aon _sF" id n’"""’f.‘;ug the 'C\EEW-{- 6012_ 3:)6 ]

Bill Shipley Further Asked: operd-t 410)

Thanks for the clarification. It seems to me that the simplest, and most straightforward,
way of modeling and representing manipulations of a causal system is to simply (1)
modify the causal graph of the unmanipulated system to represent the proposed manip-
ulation, (2) translate this new graph into structural equations, and (3) derive predictions
(including conditional predictions) from the resulting equations; this is how I have treated
the notion in my book. Why worry about do(x) at all? In particular, one can model quite
sophisticated manipulations this way. For instance, one might well ask what would hap-
pen if one added an amount z to some variable x in the causal graph, in which z is
dependent on some other variable in the graph.

Author’s Reply:

The method you are proposing, to replace the current equation x = f(pay) with
x = g(f(pay), 1, z), requires that we know the functional forms of f and g, as in linear
systems or, alternatively, that the parents of X are observed, as in the Process Control
example on page 74. These do not hold, however, in the non-parametric, partially
observable settings of Chapters 3 and 4, which might render it impossible to predict the
effect of the proposed intervention from data gathered prior to the intervention, a prob-
lem we called identification. Because pre-intervention statistics is not available for vari-
able /, and f is unknown, there are semi-Markovian cases where P(y | do(x)) is identifi-
able while P(y [do(x = g(f(pay). I, z))) is not; each case must be analyzed on its own
merits. It is important, therefore, to impose certain standards on this vast space of poten-
tial interventions, and focus attention on those that could illuminate others.

Science thrives on standards, because standards serve (at least) two purposes: com-
munication and theoretical focus. Mathematicians, for example, have decided that the
derivative operator “dy/dx” is a nice standard for communicating information about
change, so that is what we teach in calculus, although other operators might also serve
the purpose, for example, xdy/dx or (dy/dx)/y, etc. The same applies to causal analysis:

1. Communication: If we were to eliminate the term “treatment effect” from epi-
demiology, and replace it with detailed descriptions of how the effect was meas-
ured, we would practically choke all communication among epidemiologists. A
standard was therefore established: what we measure in a controlled, random-
ized experiment will be called “treatment effect”; the rest will be considered
variations on the theme. The “do-operator” represents this standard faithfully.

The same goes for SEM. Sewall Wright talked about “effect coefficients” and
established them as the standard of “direct effect” in path analysis (before it got
molested with regressional jargon), with the help of which more elaborate effects
can be constructed. Again, the “do-operator” is the basis for defining this standard.

2. Theoretical focus: Many of the variants of manipulations can be reduced to
“do,” or to several applications of “do.” Theoretical results established for “do”
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11.5 CAUSAL ANALYSIS IN LINEAR STRUCTURAL MODELS

11.5.1 General Criterion for Parameter Identification (Chapter 5, pp. 149-54)
Question to Author: - :

The parameter identification method described in Section 5.3.1 rests on repetitive appli-
cations of two basic criteria: (1) the single-door criterion of Theorem 5.3.1, and (2) the
back-door criterion of Theorem 5.3.2. This method may require appreciable bookkeep-
ing in combining results from various segments of the graph. Is there a single graphical
criterion of identification that unifies the two theorems and thus avoids much of the
bookkeeping involved?

Author’s Reply:
A unifying criterion is described in the following lemma (Pearl 2004):
Lemma 11.5.1 (Graphical identification of direct effects)
Let ¢ stand for the path coefficient assigned to the arrow X —Y in a causal graph G.
Parameter c is identified if there exists a pair (W, Z), where W is a single node in G (not
excluding W = X)), and Z is a (possibly empty) set of nodes in G, such that:

1. Z consists of nondescendants of Y,

2. Zd-separates W fromY in the graph G formed by removing X —Y from G,

3. Wand X are d-connected, given Z, in G.

Moreover, the estimand induced by the pair (W, Z) is given by:

cov(Y, W | Z)
covX, W | Z)

The intuition is that, conditional on Z, W acts as an instrumental variable relative to
X — Y. See also McDonald (2002a). &
“~ More general 1dentification methods are reported in Brito and Pearl (2002a,b,c; 2006)/\
2

and survo{ed in Brito £ 2.010#@

11.5.2 The Causal Interpretation of Structural Coefficients
Question to Author:

In response to assertions made in Sections 5.1 and 5.4 that a correct causal interpreta-
tion is conspicuously absent from SEM books and papers, including all 1970-99 texts
in economics, two readers wrote that the “unit-change” interpretation is common and
well accepted in the SEM literature. L.H. from the University of Alberta wrote:

Page 245 of L. Hayduk, Structural Equation Modeling with LISREL: Essentials and
Advances, 1987, [states] that a slope can be interpreted as: the magnitude of the
change in y that would be predicted to accompany a unit change in x with the other
variables in the equation left untouched at their original values.

O.D. Duncan, Introduction to Structural Equation Models (1975) pages 1 and 2 are
pretty clear on b as causal. More precisely, it says that “a change of one unit in x
...produces a change of b units in y” (page 2). I suspect that H. M. Blalock’s book
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Example 11.7.3 e¢:Y = y' (e.g., the expected income Y of those who currently earn
Y = y' if we were to mandate x hours of training each month).

E(Y, Y =y)=y +T[x — EX|y"]
=y + E(Y|do(x)) — E[Y |do(X = r'y")], (11.37)
where r’ is the regression coefficient of X on ¥.

Example 11.7.4 Consider the nonrecursive price-demand model of p. 215, equa-
tions (7.9)—(7.10):
q=b1p+d1i+u1
p = byg + dow + u,. (11.38)
Our counterfactual problem (p. 216) reads: Given that the current price is P = py,
what would be the expected value of the demand Q if we were to control the price at
P = p1?
Making the correspondence P = X, Q = Y, e = {P = py, i, w}, we see that this problem
is identical to Example 11.7.2 above (effect of treatment on the treated), subject to con-
ditioning on i and w. Hence, since T = b;, we can immediately write

EQp, |po, i, w) = E(Y | pg, i, w) + bi(p1 — po)
= rppo + rii + r,w + bi(p; — po), (11.39)
where r,, r;, and r,, are the coefficients of P, i and w, respectively, in the regression of O
onP, i, and w.

Equation (11.39) replaces equation (7.17) on page 217. Note that the parameters of the
price equation, p = byq + dow + u,, enter (11.39) only via the regression coefficients.
Thus, they need not be calculated explicitly in cases where they are estimated directly by
least square.

Remark: Example 11.7.1 is not really surprising; we know that the probability
of causation is empirically identifiable under the assumption of monotonicity
(p. 293). But examples 11.7.2 and 11.7.3 trigger the following conjecture:

Conjecture:
Any counterfactual query of the form P(Y, | €) is empirically identifiable when—¥—s"—
-menoionie-relative-io- (N 8Very constant s efTect model,\ io €0, yx £ uF- Yx,_'f“;‘

It is good to end on a challenging note. is cons—t'an + over u.

11.7.2 The Meaning of Counterfactuals
Question to Author:

I have a hard time understanding what counterfactuals are actually useful for. To me,
they seem to be answering the wrong question. In your book, you give at least a couple
of different reasons for when one would need the answer to a counterfactual question,
so let me tackle these separately:

1. Legal questions of responsibility. From your text, I infer that the American
legal system says that a defendant is guilty if he or she caused the plaintiff’s
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