
constant at their original values. We formally express this interpretation using condi-
tional expectations:

(11.17)

Note that, as a regression equation, (11.16) is claimless; i.e., it cannot be falsified by
any experiment and, from (11.17), e is automatically rendered uncorrelated with X1, X2,
and X3.

In contrast, if equation (11.16) represents a structural equation, it makes empirical
claims about the world (e.g., that other variables in the system do not affect X0 once we
hold X1, X2, and X3 fixed), and the interpretation of b1 must be modified in two funda-
mental ways. First, the phrase “a unit change in X1” must be qualified to mean “a unit
interventional change in X1,” thus ruling out changes in X1 that are produced by other
variables in the model (possibly correlated with e). Second, the phrase “where X2 and X3
remain constant” must be abandoned and replaced by the phrase “if we hold X2 and X3
constant,” thus ensuring constancy even when X2 is affected by X1.

Formally, these two modifications are expressed as:

. (11.18)

The phrase “left untouched at their original values” may lead to ambiguities.
Leaving variables untouched permits those variables to vary (e.g., in response to the unit
increase in X1 or other influences), in which case the change in X0 would correspond to
the total effect

(11.19)

or to the marginal conditional expectation

(11.20)

depending on whether the change in X1 is interventional or observational. None of
(11.19) or (11.20) matches the meaning of b1 in equation (11.16), regardless of whether
we treat (11.16) as a structural or a regression equation.

The interpretation expressed in (11.18) holds in all models, including those contain-
ing multiple equations, recursive and nonrecursive, regardless of whether e is correlated
with other variables in the model and regardless of whether X2 and X3 are affected by
X1. In contrast, expression (11.17) coincides with (11.18) only under very special cir-
cumstances (defined by the single-door criterion of Theorem 5.3.1). It is for this reason
that we consider (11.18), not (11.17), to be an “interpretation” of b1; (11.17) interprets the
“regression estimate” of b1 (which might well be biased), while (11.18) interprets b1 itself.

11.5.3 Defending the Causal Interpretation of SEM (or, SEM Survival Kit)
Question to Author:

J. Wilson from Surrey, England, asked about ways of defending his Ph.D. thesis before
examiners who do not approve of the causal interpretation of structural equation models
(SEM). He complained about “the complete lack of emphasis in PhD programmes on

E(X0 � x1 � 1) � E(X0 � x1),

E(X0 � do(x1 � 1)) � E(X0 � do(x1))

b1 � E(X0 � do(x1 � 1, x2, x3)) � E(X0 � do(x1, x2, x3))

 � RX0 X1
#X2 X3

.
 b1 � E(X0 � x1 � 1, x2, x3) � E(X0 � x1, x2, x3)
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how to defend causal interpretations and policy implications in a viva when SEM is used …
if only causality had been fully explained at the beginning of the programme, then each
of the 70,000 words used in my thesis would have been carefully measured to defend
first the causal assumptions, then the data, and finally the interpretations … (I wonder
how widespread this problem is?) Back to the present and urgent task of trying to satisfy
the examiners, especially those two very awkward Stat Professors – they seem to be
trying to outdo each other in nastiness.”

Author’s Reply:

The phenomenon that you complain about is precisely what triggered my writing of
Chapter 5 – the causal interpretation of SEM is still a mystery to most SEMs researchers,
leaders, educators, and practitioners. I have spent hours on SEMNET Discussion List
trying to rectify the current neglect, but it is only students like yourself who can turn
things around and help reinstate the causal interpretation to its central role in SEM
research.

As to your concrete question – how to defend the causal interpretation of SEM
against nasty examiners who oppose such interpretation – permit me to assist by
sketching a hypothetical scenario in which you defend the causal interpretation of your
thesis in front of a hostile examiner, Dr. EX. (Any resemblance to Dr. EX is purely coin-
cidental.)

A Dialogue with a Hostile Examiner
or

SEM Survival Kit

For simplicity, let us assume that the model in your thesis consists of just two-equations,

(11.21)

, (11.22)

with e2 uncorrelated with x. The associated diagram is given in Figure 11.14. Let us fur-
ther assume that the target of your thesis was to estimate parameter c, that you have esti-
mated c satisfactorily to be c � 0.78 using the best SEM methods, and that you have
given a causal interpretation to your finding.

Now your nasty examiner, Dr. EX, arrives and questions your interpretation.
Dr. EX: What do you mean by “c has a causal interpretation”? 
You: I mean that a unit change in y will bring about a c units change in E(Z).
Dr. EX: The words “change” and “bring about” make me uncomfortable; let’s be

scientific. Do you mean E(Z ƒ y) � cy � a??? I can understand this last expression,
because the conditional expectation of Z given y, E(Z ƒ y), is well defined mathemati-
cally, and I know how to estimate it from data. But “change” and “bring about” is jar-
gon to me. 

You: I actually mean “change,” not “an increase in conditional expectation,” and by
“change” I mean the following: If we had the physical means of fixing y at some

z � cy � e2

y � bx � e1
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constant y1, and of changing that constant from y1 to y2, then the observed change in
E(Z) would be c(y2 – y1).

Dr. EX: Well, well, aren’t we getting a bit metaphysical here? I never heard about
“fixing” in my statistics classes.

You: Oh, sorry, I did not realize you have statistics background. In that case, let me
rephrase my interpretation a bit, to read as follows: If we had the means of conducting
a controlled randomized experiment, with y randomized, then if we set the control group
to y1 and the experimental group to y2, the observed difference in E(Z) would be E(Z2) �
E(Z1) � c(y2 � y1) regardless of what values y1 and y2 we choose. (Z1 and Z2 are the
measurements of z under the control and experimental groups, respectively.)14

Dr. EX: That sounds much closer to what I can understand. But I am bothered by a
giant leap that you seem to be making. Your data was nonexperimental, and in your
entire study you have not conducted a single experiment. Are you telling us that your
SEM exercise can take data from an observational study, do some LISREL analysis on
it, and come up with a prediction of what the outcome of a controlled randomized exper-
iment will be? You’ve got to be kidding!! Do you know how much money can be saved
nationwide if we could replace experimental studies with SEM magic?

You: This is not magic, Dr. EX, it is plain logic. The input to my LISREL analysis was
more than just nonexperimental data. The input consisted of two components: (1) data, (2)
causal assumptions; my conclusion logically follows from the two. The second component
is absent in standard experimental studies, and that is what makes them so expensive.

Dr. EX: What kind of assumptions? “Causal”? I never heard of such strangers. Can
you express them mathematically the way we normally express assumptions – say, in the
form of conditions on the joint density, or properties of the covariance matrix? 

You: Causal assumptions are of a different kind; they cannot be written in the vocab-
ulary of density functions or covariance matrices. Instead, they are expressed in my
causal model. 

Dr. EX: Looking at your model, equations (11.21)–(11.22), I do not see any new
vocabulary; all I see is equations.

You: These are not ordinary algebraic equations, Dr. EX. These are “structural equa-
tions,” and if we read them correctly, they convey a set of assumptions with which you are
familiar, namely, assumptions about the outcomes of hypothetical randomized experiments
conducted on the population – we call them “causal” or “modeling” assumptions, for
want of better words, but they can be understood as assumptions about the behavior of
the population under various randomized experiments.

Dr. EX: Wait a minute! Now that I begin to understand what your causal assumptions
are, I am even more puzzled than before. If you allow yourself to make assumptions about
the behavior of the population under randomized experiments, why go through the trou-
ble of conducting a study? Why not make the assumption directly that in a randomized
experiment, with y randomized, the observed difference in E(Z) should be 
with just any convenient number, and save yourself agonizing months of data collec-
tion and analysis. He who believes your other untested assumptions should also believe
your assumption. E(Z2) � E(Z1) � c�(y2 � y1)

c�

c�(y2 � y1),
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You: Not so, Dr. EX. The modeling assumptions with which my program begins are
much milder than the assertion E(Z2) � E(Z1) � 0.78(y2 � y1) with which my study con-
cludes. First, my modeling assumptions are qualitative, while my conclusion is quanti-
tative, making a commitment to a specific value of c � 0.78. Second, many researchers
(including you, Dr. EX) would be prepared to accept my assumptions, not my conclusion,
because the former conforms to commonsense understanding and general theoretical
knowledge of how the world operates. Third, the majority of my assumptions can be
tested by experiments that do not involve randomization of y. This means that if ran-
domizing y is expensive, or infeasible, we still can test the assumptions by controlling
other, less formidable variables. Finally, though this is not the case in my study, model-
ing assumptions often have some statistical implications that can be tested in nonexper-
imental studies, and, if the test turns out to be successful (we call it “fit”), it gives us
further confirmation of the validity of those assumptions.

Dr. EX: This is getting interesting. Let me see some of those “causal” or modeling
assumptions, so I can judge how mild they are.

You: That’s easy, have a look at our model, Figure 11.14, where

z – student’s score on the final exam,
y – number of hours the student spent on homework,
x – weight of homework (as announced by the teacher) in the final grade.

When I put this model down on paper, I had in mind two randomized experiments, one
where x is randomized (i.e., teachers assigning weight at random), the second where the
actual time spent on homework (y) is randomized. The assumptions I made while think-
ing of those experiments were:

1. Linearity and exclusion for y: with b unknown 
(Y2 and Y1 are the time that would be spent on homework under announced weights
x2 and x1, respectively.) Also, by excluding z from the equation, I assumed that the
score z would not affect y, because z is not known at the time y is decided.

2. Linearity and exclusion for z: for all x, with c
unknown. In words, x has no effect on z, except through y.

In addition, I made qualitative assumptions about unmeasured factors that govern x under
nonexperimental conditions; I assumed that there are no common causes for x and z.

Do you, Dr. EX, see any objection to any of these assumptions?
Dr. EX: Well, I agree that these assumptions are milder than a blunt, unsupported dec-

laration of your thesis conclusion, E(Z2) � E(Z1) � 0.78(y2 � y1), and I am somewhat
amazed that such mild assumptions can support a daring prediction about the actual
effect of homework on score (under experimental setup). But I am still unhappy with
your common cause assumption. It seems to me that a teacher who emphasizes the
importance of homework would also be an inspiring, effective teacher, so e2 (which
includes factors such as quality of teaching) should be correlated with x, contrary to your
assumption.

You: Dr. EX, now you begin to talk like an SEM researcher. Instead of attacking the
method and its philosophy, we are beginning to discuss substantive issues – e.g., whether
it is reasonable to assume that a teacher’s effectiveness is uncorrelated with the weight

E(Z2) � E(Z1) � c(y2 � y1)

E(Y2) � E(Y1) � b(x2 � x1),
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that the teacher assigns to homework. I personally have had great teachers that could not
care less about homework, and conversely so.

But this is not what my thesis is about. I am not claiming that teachers’ effectiveness
is uncorrelated with how they weigh homework; I leave that to other researchers to test
in future studies (or might it have been tested already?). All I am claiming is: Those
researchers who are willing to accept the assumption that teachers’ effectiveness is
uncorrelated with how they weigh homework will find it interesting to note that this
assumption, coupled with the data, logically implies the conclusion that an increase of
one homework-hour per day causes an (average) increase of 0.78 grade points in stu-
dent’s score. And this claim can be verified empirically if we are allowed a controlled
experiment with randomized amounts of homework (y).

Dr. EX: I am glad you do not insist that your modeling assumptions are true; you
merely state their plausibility and explicate their ramifications. I cannot object to that.
But I have another question. You said that your model does not have any statistical impli-
cations, so it cannot be tested for fitness to data. How do you know that? And doesn’t
this bother you?

You: I know it by just looking at the graph and examining the missing links. A criteri-
on named d-separation (see Section 11.1.2, “d-separation without tears”) permits stu-
dents of SEM to glance at a graph and determine whether the corresponding model
implies any constraint in the form of a vanishing partial correlation between variables.
Most statistical implications (though not all) are of this nature. The model in our exam-
ple does not imply any constraint on the covariance matrix, so it can fit perfectly any
data whatsoever. We call this model “saturated,” a feature that some SEM researchers,
unable to shake off statistical-testing traditions, regard as a fault of the model. It isn’t.
Having a saturated model at hand simply means that the investigator is not willing to
make implausible causal assumptions, and that the mild assumptions he/she is willing
to make are too weak to produce statistical implications. Such a conservative attitude
should be commended, not condemned. Admittedly, I would be happy if my model
were not saturated – say, if e1 and e2 were uncorrelated. But this is not the case at hand;
common sense tells us that e1 and e2 are correlated, and it also shows in the data. I tried
assuming coy(e1, e2) � 0, and I got terrible fit. Am I going to make unwarranted
assumptions just to get my model “knighted” as “nonsaturated”? No! I would rather
make reasonable assumptions, get useful conclusions, and report my results side by
side with my assumptions.

Dr. EX: But suppose there is another saturated model, based on equally plausible
assumptions, yet leading to a different value of c. Shouldn’t you be concerned with the
possibility that some of your initial assumptions are wrong, hence that your conclusion
c � 0.78 is wrong? There is nothing in the data that can help you prefer one model over
the other.

You: I am concerned indeed, and, in fact, I can immediately enumerate the structures
of all such competing models; the two models in Figure 11.15 are examples, and many
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more. (This too can be done using the d-separation criterion; see pp. 145–8.) But note
that the existence of competing models does not in any way weaken my earlier stated
claim: “Researchers who accept the qualitative assumptions of model M are compelled
to accept the conclusion c � 0.78.” This claim remains logically invincible. Moreover,
the claim can be further refined by reporting the conclusions of each contending model,
together with the assumptions underlying that model. The format of the conclusion will
then read:

If you accept assumption set A1, then c � c1 is implied,
If you accept assumption set A2, then c � c2 is implied,

and so on.
Dr. EX: I see, but still, in case we wish to go beyond these conditional statements and

do something about deciding among the various assumption sets, are there no SEM meth-
ods to assist one in this endeavor? We, in statistics, are not used to facing problems with
two competing hypotheses that cannot be submitted to some test, however feeble. 

You: This is a fundamental difference between statistical data analysis and SEM.
Statistical hypotheses, by definition, are testable by statistical methods. SEM models,
in contrast, rest on causal assumptions, which, also by definition (see p. 39), cannot be
given statistical tests. If our two competing models are saturated, we know in advance
that there is nothing more we can do but report our conclusions in a conditional format, as
listed above. If, however, the competition is among equally plausible yet statistically
distinct models, then we are facing the century-old problem of model selection, where
various selection criteria such as AIC have been suggested for analysis. However, the
problem of model selection is now given a new, causal twist – our mission is not to
maximize fitness, or to maximize predictive power, but rather to produce the most reli-
able estimate of causal parameters such as c. This is a new arena altogether (see Pearl
2004).

Dr. EX: Interesting. Now I understand why my statistician colleagues got so totally
confused, mistrustful, even antagonistic, upon encountering SEM methodology (e.g.,
Freedman 1987; Holland 1988; Wermuth 1992). One last question. You started talking
about randomized experiments only after realizing that I am a statistician. How would
you explain your SEM strategy to a nonstatistician?

You: I would use plain English and say: “If we have the physical means of fixing y
at some constant y1, and of changing that constant from y1 to y2, then the observed
change in E(Z) would be c(y2 � y1).” Most people understand what “fixing” means,
because this is on the mind of policy makers. For example, a teacher interested in the
effect of homework on performance does not think in terms of randomizing homework.
Randomization is merely an indirect means for predicting the effect of fixing.

Actually, if the person I am talking to is really enlightened (and many statisticians
are), I might even resort to counterfactual vocabulary and say, for example, that a stu-
dent who scored z on the exam after spending y hours on homework would have scored
z � c had he/she spent y � 1 hours on homework. To be honest, this is what I truly had
in mind when writing the equation z � cy � e2, where e2 stood for all other character-
istics of the student that were not given variable names in our model and that are not
affected by y. I did not even think about E(Z), only about z of a typical student.
Counterfactuals are the most precise linguistic tool we have for expressing the meaning
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of scientific relations. But I refrain from mentioning counterfactuals when I talk to statis-
ticians because, and this is regrettable, statisticians tend to suspect deterministic concepts,
or concepts that are not immediately testable, and counterfactuals are such concepts
(Dawid 2000; Pearl 2000).

Dr. EX: Thanks for educating me on these aspects of SEM. No further questions.
You: The pleasure is mine.

11.5.4 Where Is Economic Modeling Today? – Courting Causes with Heckman

Section 5.2 of this book decries the decline in the understanding of structural equation
modeling in econometric in the past three decades (see also Hoover 2003, “Lost
Causes”) and attributes this decline to a careless choice of notation which blurred the
essential distinction between algebraic and structural equations. In a series of articles
(Heckman 2000, 2003, 2005; Heckman and Vytlacil 2007), James Heckman has set out
to overturn this perception, reclaim causal modeling as the central focus of economic
research, and reestablish economics as an active frontier in causal analysis. This is not
an easy task by any measure. To adopt the conceptual and technical advances that have
emerged in neighboring disciplines would amount to admitting decades of neglect in
econometrics, while to dismiss those advances would necessitate finding them econo-
metric surrogates. Heckman chose the latter route, even though most modern advances
in causal modeling are rooted in the ideas of economists such as Haavelmo (1943),
Marschak (1950), and Strotz and Wold (1960).

One step in Heckman’s program was to reject the do-operator and the “surgery”
semantics upon which it is based, thus depriving economists of the structural semantics
of counterfactuals developed in this book (especially Chapter 7), which unifies tradi-
tional econometrics with the potential-outcome approach. Heckman’s reasons for reject-
ing surgery are summarized thus:

Controlled variation in external (forcing) variables is the key to defining causal effects
in nonrecursive models … Pearl defines a causal effect by ‘shutting one equation
down’ or performing ‘surgery’ in his colorful language. He implicitly assumes that
‘surgery,’ or shutting down an equation in a system of simultaneous equations, uniquely
fixes one outcome or internal variable (the consumption of the other person in my
example). In general, it does not. Putting a constraint on one equation places a restric-
tion on the entire set of internal variables. In general, no single equation in a system
of simultaneous equations uniquely determines any single outcome variable. Shutting
down one equation might also affect the parameters of the other equations in the sys-
tem and violate the requirements of parameter stability. (Heckman and Vytlacil 2007)

Clearly, Heckman’s objections are the same as Cartwright’s (Section 11.4.6):

1. Ideal surgery may be technically infeasible,

2. Economic systems are nonmodular.

We have repudiated these objections in four previous subsections (11.4.3–11.4.6)
which readers can easily reapply to deconstruct Heckman’s arguments. It is important to
reemphasize, though, that, as in the case of Cartwright, these objections emanate from
conflating the task of definition (of counterfactuals) with those of identification and
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