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11.3.5 Understanding Propensity Scores

The method of propensity score (Rosenbaum and Rubin 1983), or propensity score match-
ing (PSM), is the most developed and popular strategy for causal analysis in observational
studies. It is not emphasized in this book, because it is an estimation method, designed to
deal with the variability of finite samples, but does not add much to our understanding of
the asymptotic, large-sample limits, which is the main focus of the book. However, due to
the prominence of the propensity score method in causal analysis, and recent controversies
surrounding its usage, we devote this section to explain where it falls in the grand scheme of
graphical models, admissibility, identifiability, bias reduction, and the statistical vs. causal
dichotomy.

The method of propensity score is based on a simple, yet ingenious, idea of purely
statistical character. Assuming a binary action (or treatment) � , and an arbitrary set 	 of
measured covariates, the propensity score � �
� � is the probability that action � ��� will be
chosen by a participant with characteristics 	 � � , or

� �
� � � � � � � � � 	 � � � � (11.9)

What Rosenbaum and Rubin showed is that, viewing � �
� � as a function of 	 , hence,
as a random variable, � and 	 are independent given � �
� � , that is, � ��� 	 � � ��� � . In words,
all units that map into the same value of � �
� � are comparable, or “balanced,” in the sense
that, within each stratum of � , treated and untreated units have the same distribution of
characteristics 	 .7

To see the significance of this result, let us assume, for simplicity, that � ��� � can be esti-
mated separately and approximated by discrete strata � � ��� ����� �������������� � . The conditional
independence � � � 	 � � �
� � , together with the functional mapping 	 ��� , renders 	 and �
� -equivalent in the sense defined in Section 11.3.3, equation (11.8), namely, for any � ,

�

�
� ����� � � ��� � �
� � � �

�
� � ��� � � ��� � ��� � � (11.10)

This follows immediately by writing:8

 � � � ��� � � ��� � ��� � �  �  � � � ��� � ��� � ��� � ��� � � �
� � � � ���
�  �  � � � ��� � � ��� � ��� � � ��� � � �
�  � � ����� � � ��� � ��� � �

Thus far we have not mentioned any causal relationship, nor the fact that � is an out-
come variable and that, eventually, our task would be to estimate the causal effect of �
on � . The � -equivalence of 	 and � merely implies that, if for any reason one wishes to
estimate the “adjustment estimand”  � � � ��� ��� ��� � ��� � , with 	 and � two arbitrary sets of
variables, then, instead of summing over a high-dimensional set 	 , one might as well sum
over a one-dimensional vector � ��� � . The asymptotic estimate, in the limit of a very large
sample, would be the same in either method.

7This independence emanates from the special nature of the function 	�
��� and is not represented in the graph,
i.e., if we depict 	 as a child of � , 	 would not in general � -separate � from � .

8This also follows from the fact that condition ��� is satisfied by the substitution ������� and ������	�
��� .
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This � -equivalence further implies – and this is where causal inference first comes into
the picture – that if one chooses to approximate the causal effect � � ��� �	���
��� � by the adjust-
ment estimand � � � � ��� � � ��� , then, asymptotically, the same approximation can be achieved
using the estimand � � � � ��� � � ��� , where the adjustment is performed over the strata of � .
The latter has the advantage that, for finite samples, each of the strata is less likely to be
empty and each is likely to contain both treated and untreated units.

The method of propensity score can thus be seen as an efficient estimator of the adjust-
ment estimand, formed by an arbitrary set of covariates 	 ; it makes no statement regarding
the appropriateness of 	 , nor does it promise to correct for any confounding bias, or to
refrain from creating new bias where none exists.

In the special case where 	 is admissible, that is,

� � ��� �	���
��� � ��� � � � ��� ��� ��� � (11.11)

� would be admissible as well, and we would then have an unbiased estimand of the causal
effect,9

� � ��� ��������� � ��� � � � ��� � � ��� �
accompanied by an efficient method of estimating the right-hand side. Conversely, if 	 in
inadmissible, � would be inadmissible as well, and all we can guarantee is that the bias
produced by the former would be faithfully and efficiently reproduced by the latter.

The controversy surrounding propensity score

Thus far, our presentation of propensity score leaves no room for misunderstanding, and
readers of this book would find it hard to understand how a controversy could emerge
from an innocent estimation method which merely offers an efficient way of estimating a
statistical quantity that sometimes does, and sometimes does not, coincide with the causal
quantity of interest, depending on the choice of 	 .

But a controversy has developed recently, most likely due to the increased popularity
of the method and the strong endorsement it received from prominent statisticians (Rubin
2007), social scientists (Morgan and Winship 2007; Berk and de Leeuw 1999), health sci-
entists (Austin 2008), and economists (Heckman 1992). The popularity of the method has
in fact grown to the point where some federal agencies now expect program evaluators to
use this approach as a substitute for experimental designs (Peikes et al. 2008). This move
reflects a general tendency among investigators to play down the cautionary note concern-
ing the required admissibility of 	 , and to interpret the mathematical proof of Rosenbaum
and Rubin as a guarantee that, in each strata of � , matching treated and untreated subjects
somehow eliminates confounding from the data and contributes therefore to overall bias re-
duction. This tendency was further reinforced by empirical studies (Heckman et al. 1998;
Dehejia and Wahba 1999) in which agreement was found between propensity score anal-
ysis and randomized trials, and in which the agreement was attributed to the ability of the

9Rosenbaum and Rubin (1983) proved the � -equivalence of � and 	 only for admissible � , which is unfortu-
nate; it gives readers the impression that the propensity score matching somehow contributes to bias reduction.
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former to “balance” treatment and control groups on important characteristics. Rubin has
encouraged such interpretations by stating: “This application uses propensity score meth-
ods to create subgroups of treated units and control units ... as if they had been randomized.
The collection of these subgroups then ‘approximate’ a randomized block experiment with
respect to the observed covariates” (Rubin 2007).

Subsequent empirical studies, however, have taken a more critical view of propensity
score, noting with disappointment that a substantial bias is sometimes measured when care-
ful comparisons are made to results of clinical studies (Smith and Todd 2005; Luellen et al.
2005; Peikes et al. 2008).

But why would anyone play down the cautionary note of Rosenbaum and Rubin when
doing so would violate the golden rule of causal analysis: No causal claim can be estab-
lished by purely statistical methods, be it propensity scores, regression, stratification, or any
other distribution-based design. The answer, I believe, rests with the language that Rosen-
baum and Rubin used to formulate the condition of admissibility, i.e., equation (1.11). The
condition was articulated in the restricted language of potential-outcome, stating that the
set 	 must render � “strongly ignorable,” i.e., � � ��� � � � � � � � 	 . As stated several times
in this book, the opacity of “ignorability” is the Achilles’ heel of the potential-outcome
approach – no mortal can apply this condition to judge whether it holds even in simple
problems, with all causal relationships correctly specified, let alone in partially specified
problems that involve dozens of variables.10

The difficulty that most investigators experience in comprehending what “ignorability”
means, and what judgment it summons them to exercise, has tempted them to assume that
it is automatically satisfied, or at least is likely to be satisfied, if one includes in the analysis
as many covariates as possible. The prevailing attitude is that adding more covariates can
cause no harm (Rosenbaum 2002, p. 76) and can absolve one from thinking about the causal
relationships among those covariates, the treatment, the outcome and, most importantly, the
confounders left unmeasured (Rubin 2009).

This attitude stands contrary to what students of graphical models have learned, and
what this book has attempted to teach. The admissibility of 	 can be established only by
appealing to the causal knowledge available to the investigator, and that knowledge, as we
know from graph theory and the back-door criterion, makes bias reduction a non-monotonic
operation, i.e., eliminating bias (or imbalance) due to one confounder may awaken and un-
leash bias due to dormant, unmeasured confounders. Examples abound (e.g., Figure 6.3)
where adding a variable to the analysis not only is not needed, but would introduce irrepara-
ble bias (Pearl 2009, Shrier 2009, Sjölander 2009).

Another factor inflaming the controversy has been the general belief that the bias-
reducing potential of propensity score methods can be tested experimentally by running
case studies and comparing effect estimates obtained by propensity scores to those ob-
tained by controlled randomized experiments (Shadish and Cook 2009).11 This belief is

10Advocates of the potential outcome tradition are invited to inspect Figure 11.8(b) (or any model, or story, or
toy-example of their choice) and judge whether any subset of � renders � “strongly ignorable.” This could easily
be determined, of course, by the back-door criterion, but, unfortunately, graphs are still feared and misunderstood
by some of the chief advocates of the potential-outcome camp (e.g., Rubin 2004, 2008b, 2009).

11Such beliefs are encouraged by valiant statements such as: “For dramatic evidence that such an analysis can
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unjustified because the bias-reducing potential of propensity scores depends critically on
the specific choice of 	 or, more accurately, on the cause-effect relationships among vari-
ables inside and outside 	 . Measuring significant bias in one problem instance (say, an
educational program in Oklahoma) does not preclude finding zero bias in another (say,
crime control in Arkansas), even under identical statistical distributions � �
����� � ��� .

With these considerations in mind, one is justified in asking a social science type ques-
tion: What is it about propensity scores that has inhibited a more general understanding of
their promise and limitations?

Richard Berk, in Regression Analysis: A Constructive Critique (Berk 2004), recalls
similar phenomena in social science, where immaculate ideas were misinterpreted by the
scientific community: “I recall a conversation with Don Campbell in which he openly
wished that he had never written Campbell and Stanley (1966). The intent of the justly
famous book, Experimental and Quasi-Experimental Designs for Research, was to contrast
randomized experiments to quasi-experimental approximations and to strongly discourage
the latter. Yet the apparent impact of the book was to legitimize a host of quasi-experimental
designs for a wide variety of applied social science. After I got to know Dudley Duncan
late in his career, he said that he often thought that his influential book on path analysis,
Introduction to Structural Equation Models was a big mistake. Researchers had come away
from the book believing that fundamental policy questions about social inequality could be
quickly and easily answered with path analysis.” (p. xvii)

I believe that a similar cultural phenomenon has evolved around propensity scores.
It is not that Rosenbaum and Rubin were careless in stating the conditions for success.

Formally, they were very clear in warning practitioners that propensity scores work only
under “strong ignorability” conditions. However, what they failed to realize is that it is
not enough to warn people against dangers they cannot recognize; to protect them from
perilous adventures, we must also give them eyeglasses to spot the threats, and a meaningful
language to reason about them. By failing to equip readers with tools (e.g., graphs) for
recognizing how “strong ignorability” can be violated or achieved, they have encouraged
a generation of researchers (including federal agencies) to assume that ignorability either
holds in most cases, or can be made to hold by clever designs.

reach the same conclusion as an exactly parallel randomized experiment, see Shadish and Clark (2006, unpub-
lished)” (Rubin 2007).


