
which might or might not agree with equation (3.29). In the latter case, we would have
good reason to reject the model in Figure 11.9 as inconsistent, and seek perhaps addi-
tional measurements to confirm or refute Figure 11.8(b).

Auxiliary experiments may offer an even more powerful discriminatory tool than
auxiliary observations. Consider variable W1 in Figure 11.8(b). If we could conduct a
controlled experiment with W1 randomized, instead of X, the data obtained would enable
us to estimate the causal effect of X on Y with no bias (see Section 3.4.4). At the very
least, we would be able to discern whether W1 is a parent of X, as in Figure 11.9, or an
indirect ancestor of X, as in Figure 11.8(b).

In an attempt to adhere to traditional statistical methodology, some causal analysts
have adopted a method called “sensitivity analysis” (e.g., Rosenbaum 2002, pp. 105–170),
which gives the impression that causal assumptions are not invoked in the analysis. This,
of course, is an illusion. Instead of drawing inferences by assuming the absence of certain
causal relationships in the model, the analyst tries such assumptions and evaluates how
strong alternative causal relationships must be in order to explain the observed data. The
result is then submitted to a judgment of plausibility, the nature of which is no different
from the judgments invoked in positing a model like the one in Figure 11.9. In its richer
setting, sensitivity analysis amounts to loading a diagram with causal relationships whose
strength is limited by plausibility judgments and, given the data, attempting to draw con-
clusions without violating those plausibility constraints. It is a noble endeavor, which thus
far has been limited to problems with a very small number of variables. The advent of dia-
grams promises to expand the applicability of this method to more realistic problems. 

11.3.5 Understanding Propensity Scores

The method of propensity score (Rosenbaum and Rubin 1983), or propensity score
matching (PSM), is the most developed and popular strategy for causal analysis in obser-
vational studies. It is not emphasized in this book, because it is an estimation method,
designed to deal with the variability of finite samples, but does not add much to our
understanding of the asymptotic, large-sample limits, which is the main focus of the
book. However, due to the prominence of the propensity score method in causal analy-
sis, and recent controversies surrounding its usage, we devote this section to explain
where it falls in the grand scheme of graphical models, admissibility, identifiability, bias
reduction, and the statistical vs. causal dichotomy.

The method of propensity score is based on a simple, yet ingenious, idea of purely
statistical character. Assuming a binary action (or treatment) X, and an arbitrary set S of
measured covariates, the propensity score L(s) is the probability that action X � 1 will
be chosen by a participant with characteristics S � s, or

(11.9)

What Rosenbaum and Rubin showed is that, viewing L(s) as a function of S, hence,
as a random variable, X and S are independent given L(s), that is, In words,
all units that map into the same value of L(s) are comparable, or “balanced,” in the sense
that, within each stratum of L, treated and untreated units have the same distribution of
characteristics S.7

X��S � L(s).

L(s) � P(X � 1 � S � s).
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7 This independence emanates from the special nature of the function L(s) and is not represented in
the graph, i.e., if we depict L as a child of S, L would not in general d-separate S from X.
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To see the significance of this result, let us assume, for simplicity, that L(s) can be
estimated separately and approximated by discrete strata L � 5l1, l2,…, lk6. The condi-
tional independence together with the functional mapping , renders
S and L c-equivalent in the sense defined in Section 11.3.3, equation (11.8), namely, for
any Y,

(11.10)

This follows immediately by writing:8

Thus far we have not mentioned any causal relationship, nor the fact that Y is an out-
come variable and that, eventually, our task would be to estimate the causal effect of X
on Y. The c-equivalence of S and L merely implies that, if for any reason one wishes to
estimate the “adjustment estimand” with S and Y two arbitrary sets of
variables, then, instead of summing over a high-dimensional set S, one might as well
sum over a one-dimensional vector L(s). The asymptotic estimate, in the limit of a very
large sample, would be the same in either method. 

This c-equivalence further implies – and this is where causal inference first comes
into the picture – that if one chooses to approximate the causal effect P(y ƒ do(x)) by the
adjustment estimand Es P(y ƒ s, x), then, asymptotically, the same approximation can be
achieved using the estimand ElP(y ƒ l, x), where the adjustment is performed over the
strata of L. The latter has the advantage that, for finite samples, each of the strata is less
likely to be empty and each is likely to contain both treated and untreated units.

The method of propensity score can thus be seen as an efficient estimator of the
adjustment estimand, formed by an arbitrary set of covariates S; it makes no statement
regarding the appropriateness of S, nor does it promise to correct for any confounding
bias, or to refrain from creating new bias where none exists. 

In the special case where S is admissible, that is,

, (11.11)

L would be admissible as well, and we would then have an unbiased estimand of the
causal effect,9

,

accompanied by an efficient method of estimating the right-hand side. Conversely, if
S is inadmissible, L would be inadmissible as well, and all we can guarantee is that
the bias produced by the former would be faithfully and efficiently reproduced by the
latter.

P(y � do(x)) � El 
P(y � l, x)

P(y � do(x)) � EsP(y � s, x)

g s 
P(y � s, x)P(s),

 � g sP(y � s, x)P(s).

 � g sg l  
P(y � s, x)P(l)P(s � l)

 g l 
P(y � l, x)P(l) � g sg l  

P(y � l, s, x)P(l)P(s � l, x)

a
s

P( y � s, x)P(s) � a
t

P( y � l, x)P(l).

S S LX��S  �  L(s),
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8 This also follows from the fact that condition C2 is satisfied by the substitution S1 � S and S2 � L(s).
9 Rosenbaum and Rubin (1983) proved the c-equivalence of S and L only for admissible S, which is

unfortunate; it gives readers the impression that the propensity score matching somehow con-
tributes to bias reduction.



The Controversy Surrounding Propensity Score 

Thus far, our presentation of propensity score leaves no room for misunderstanding, and
readers of this book would find it hard to understand how a controversy could emerge
from an innocent estimation method which merely offers an efficient way of estimating
a statistical quantity that sometimes does, and sometimes does not, coincide with the
causal quantity of interest, depending on the choice of S.

But a controversy has developed recently, most likely due to the increased populari-
ty of the method and the strong endorsement it received from prominent statisticians
(Rubin 2007), social scientists (Morgan and Winship 2007; Berk and de Leeuw 1999),
health scientists (Austin 2007), and economists (Heckman 1992). The popularity of the
method has in fact grown to the point where some federal agencies now expect program
evaluators to use this approach as a substitute for experimental designs (Peikes et al.
2008). This move reflects a general tendency among investigators to play down the cau-
tionary note concerning the required admissibility of S, and to interpret the mathemati-
cal proof of Rosenbaum and Rubin as a guarantee that, in each strata of L, matching
treated and untreated subjects somehow eliminates confounding from the data and con-
tributes therefore to overall bias reduction. This tendency was further reinforced by
empirical studies (Heckman et al. 1998; Dehejia and Wahba 1999) in which agreement
was found between propensity score analysis and randomized trials, and in which the
agreement was attributed to the ability of the former to “balance” treatment and control
groups on important characteristics. Rubin has encouraged such interpretations by stat-
ing: “This application uses propensity score methods to create subgroups of treated units
and control units … as if they had been randomized. The collection of these subgroups
then ‘approximate’ a randomized block experiment with respect to the observed covari-
ates” (Rubin 2007). 

Subsequent empirical studies, however, have taken a more critical view of propensity
score, noting with disappointment that a substantial bias is sometimes measured when
careful comparisons are made to results of clinical studies (Smith and Todd 2005;
Luellen et al. 2005; Peikes et al. 2008).

But why would anyone play down the cautionary note of Rosenbaum and Rubin
when doing so would violate the golden rule of causal analysis: No causal claim can be
established by a purely statistical method, be it propensity scores, regression, stratifica-
tion, or any other distribution-based design. The answer, I believe, rests with the lan-
guage that Rosenbaum and Rubin used to formulate the condition of admissibility, i.e.,
equation (11.11). The condition was articulated in the restricted language of potential-
outcome, stating that the set S must render X “strongly ignorable,” i.e.,
As stated several times in this book, the opacity of “ignorability” is the Achilles’ heel of
the potential-outcome approach – no mortal can apply this condition to judge whether it
holds even in simple problems, with all causal relationships correctly specified, let alone
in partially specified problems that involve dozens of variables.10

5Y1, Y06 �� X � S.
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10 Advocates of the potential outcome tradition are invited to inspect Figure 11.8(b) (or any model,
or story, or toy-example of their choice) and judge whether any subset of C renders X “strongly
ignorable.” This could easily be determined, of course, by the back-door criterion, but, unfortu-
nately, graphs are still feared and misunderstood by some of the chief advocates of the potential-
outcome camp (e.g., Rubin 2004, 2008b, 2009).



The difficulty that most investigators experience in comprehending what “ignorability”
means, and what judgment it summons them to exercise, has tempted them to assume
that it is automatically satisfied, or at least is likely to be satisfied, if one includes in the
analysis as many covariates as possible. The prevailing attitude is that adding more covari-
ates can cause no harm (Rosenbaum 2002, p. 76) and can absolve one from thinking about
the causal relationships among those covariates, the treatment, the outcome and, most
importantly, the confounders left unmeasured (Rubin 2009).

This attitude stands contrary to what students of graphical models have learned, and
what this book has attempted to teach. The admissibility of S can be established only by
appealing to the causal knowledge available to the investigator, and that knowledge, as
we know from graph theory and the back-door criterion, makes bias reduction a non-
monotonic operation, i.e., eliminating bias (or imbalance) due to one confounder may
awaken and unleash bias due to dormant, unmeasured confounders. Examples abound
(e.g., Figure 6.3) where adding a variable to the analysis not only is not needed, but
would introduce irreparable bias (Pearl 2009, Shrier 2009, Sjölander 2009).

Another factor inflaming the controversy has been the general belief that the bias-
reducing potential of propensity score methods can be assessed experimentally by running
case studies and comparing effect estimates obtained by propensity scores to those
obtained by controlled randomized experiments (Shadish and Cook 2009).11 This belief
is unjustified because the bias-reducing potential of propensity scores depends critically
on the specific choice of S or, more accurately, on the cause–effect relationships among
variables inside and outside S. Measuring significant bias in one problem instance
(say, an educational program in Oklahoma) does not preclude finding zero bias in
another (say, crime control in Arkansas), even under identical statistical distributions
P(x, s, y).

With these considerations in mind, one is justified in asking a social science type
question: What is it about propensity scores that has inhibited a more general under-
standing of their promise and limitations? 

Richard Berk, in Regression Analysis: A Constructive Critique (Berk 2004), recalls
similar phenomena in social science, where immaculate ideas were misinterpreted by
the scientific community: “I recall a conversation with Don Campbell in which he
openly wished that he had never written Campbell and Stanley (1966). The intent of the
justly famous book, Experimental and Quasi-Experimental Designs for Research, was
to contrast randomized experiments to quasi-experimental approximations and to
strongly discourage the latter. Yet the apparent impact of the book was to legitimize a
host of quasi-experimental designs for a wide variety of applied social science. After I
got to know Dudley Duncan late in his career, he said that he often thought that his
influential book on path analysis, Introduction to Structural Equation Models was a
big mistake. Researchers had come away from the book believing that fundamental pol-
icy questions about social inequality could be quickly and easily answered with path
analysis.” (p. xvii)
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11 Such beliefs are encouraged by valiant statements such as: “For dramatic evidence that such an
analysis can reach the same conclusion as an exactly parallel randomized experiment, see Shadish
and Clark (2006, unpublished)” (Rubin 2007).



I believe that a similar cultural phenomenon has evolved around propensity scores.
It is not that Rosenbaum and Rubin were careless in stating the conditions for suc-

cess. Formally, they were very clear in warning practitioners that propensity scores work
only under “strong ignorability” conditions. However, what they failed to realize is that
it is not enough to warn people against dangers they cannot recognize; to protect them
from perilous adventures, we must also give them eyeglasses to spot the threats, and a
meaningful language to reason about them. By failing to equip readers with tools (e.g.,
graphs) for recognizing how “strong ignorability” can be violated or achieved, they have
encouraged a generation of researchers (including federal agencies) to assume that
ignorability either holds in most cases, or can be made to hold by clever designs.

11.3.6 The Intuition behind do-Calculus
Question to Author Regarding Theorem 3.4.1:

In the inference rules of do-calculus (p. 85), the subgraph represents the distribution
prevailing under the operation do(X � x), since all direct causes of X are removed. What
distribution does the submodel represent, with the direct effects of X removed?

Author’s Reply:

The graph represents the hypothetical act of “holding constant” all children of X.
This severs all directed paths from X to Y, while leaving all back-door paths intact.
So, if X and Y are d-connected in that graph, it must be due to (unblocked) con-
founding paths between the two. Conversely, if we find a set Z of nodes that d-separate
X from Y in that graph, we are assured that Z blocks all back-door paths in the orig-
inal graph. If we further condition on variables Z, we are assured, by the back-door
criterion, that we have neutralized all confounders and that whatever dependence we
measure after such conditioning must be due to the causal effect of X on Y, free of
confoundings.

11.3.7 The Validity of G-Estimation

In Section 3.6.4 we introduced the G-estimation formula (3.63), together with the coun-
terfactual independency (3.62), which Robins proved to
be a sufficient condition for (3.63). In general, condition (3.62) is both overrestrictive
and lacks intuitive basis. A more general and intuitive condition leading to (3.63) is
derived in (4.5) (p. 122), which reads as follows:

(3.62*) General Condition for g-Estimation (Sequential Deconfounding)

P(y ƒ g � x) is identifiable and is given by (3.63) if every action-avoiding back-door
path from Xk to Y is blocked by some subset Lk of nondescendants of Xk. (By “action-
avoiding” we mean a path containing no arrows entering an X variable later than Xk.)

This condition bears several improvements over (3.62), as demonstrated in the fol-
lowing three examples.

Example 11.3.1 Figure 11.10 demonstrates cases where the g-formula (3.63) is valid
with a subset Lk of the past but not with the entire past. Assuming U1 and U2 are

(Y(x) �� Xk � Lk, Xk�1 � xk�1),

GX

GX

GX,
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