
S2 � 5Z2, W26 is admissible (by virtue of satisfying the back-door criterion), hence S1
and S2 are c-equivalent. Yet neither C1 nor C2 holds in this case.

A natural attempt would be to impose the condition that S1 and S2 each be c-equiva-
lent to and invoke the criterion of  Stone (1993)  and Robins (1997) for the
required set-subset equivalence. The resulting criterion, while valid, is still not complete;
there are cases where S1 and S2 are c-equivalent yet not c-equivalent to their union. A
theorem by Pearl and Paz (2008) broadens this condition using irreducible sets.

Having given a conditional-independence characterization of c-equivalence does not
solve, of course, the problem of identifying admissible sets; the latter is a causal notion
and cannot be given statistical characterization. 

The graph depicted in Figure 11.8(b) demonstrates the difficulties commonly faced
by social and health scientists. Suppose our target is to estimate P(y ƒ do(x)) given
measurements on 5X, Y, Z1, Z2, W1, W2, V6, but having no idea of the underlying graph
structure. The conventional wisdom is to start with all available covariates C � 5Z1, Z2,
W1, W2, V6, and test if a proper subset of C would yield an equivalent estimand upon
adjustment. Statistical methods for such reduction are described in Greenland et al.
(1999b), Geng et al. (2002), and Wang et al. (2008). For example, 5Z1, V6, 5Z2, V6, or 
5Z1, Z26 can be removed from C by successively applying conditions C1 and C2. This
reduction method would produce three irreducible subsets, 5Z1, W1, W26, 5Z2, W1, W26,
and 5V, W1, W26, all c-equivalent to the original covariate set C. However, none of these
subsets is admissible for adjustment, because none (including C) satisfies the back-door
criterion. While a theorem due to Tian et al. (1998) assures us that any c-equivalent sub-
set of a set C can be reached from C by a step-at-a-time removal method, going through
a sequence of c-equivalent subsets, the problem of covariate selection is that, lacking the
graph structure, we do not know which (if any) of the many subsets of C is admissible.
The next subsection discusses how external knowledge, as well as more refined analysis
of the data at hand, can be brought to bear on the problem.

11.3.4 Data vs. Knowledge in Covariate Selection

What then can be done in the absence of a causal graph? One way is to postulate a plau-
sible graph, based on one’s understanding of the domain, and check if the data refutes
any of the statistical claims implied by that graph. In our case, the graph of Figure 11.8(b)
advertises several such claims, cast as conditional independence constraints, each asso-
ciated with a missing arrow in the graph:

Satisfying these constraints does not establish, of course, the validity of the causal
model postulated because, as we have seen in Chapter 2, alternative models may exist
which satisfy the same independence constraints yet embody markedly different causal
structures, hence, markedly different admissible sets and effect estimands. A trivial
example would be a complete graph, with arbitrary orientation of arrows which, with a
clever choice of parameters, can emulate any other graph. A less trivial example, one
that is not sensitive to choice of parameters, lies in the class of equivalent structures, in

X �� 5V, Z26 � Z1, W1, W2.X �� Z2 � Z, W1, W2V �� W1

Z1 �� W2 � W1Z1 �� Z2 � V, W1, W2V �� Y � X, Z2, W2

Z2 �� W1 � W2V �� W2V �� X � Z1, W1

S1 � S2
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11.3.4 Data vs. Knowledge in Covariate Selection 
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which all conditional independencies emanate from graph separations. The search tech-
niques developed in Chapter 2 provide systematic ways of representing all equivalent
models compatible with a given set of conditional independence relations.

For example, the model depicted in Figure 11.9 is indistinguishable from that of Fig-
ure 11.8(b), in that it satisfies all the conditional independencies implied by the latter, and
no others.6 However, in contrast to Figure 11.8(b), the sets 5Z1, W1, W26, 5V, W1, W26, and
5Z2, W1, W26 are admissible.  Adjusting for the latter would remove bias if the correct model
is Figure 11.9 and might produce bias if the correct model is Figure 11.8(b). 

Is there a way of telling the two models apart? Although the notion of “observational
equivalence” precludes discrimination by statistical means, substantive causal knowledge
may provide discriminating information. For example, the model of Figure 11.9 can be
ruled out if we have good reasons to believe that variable W2 cannot have any influence on
X (e.g., it may occur later than X,) or that W1 could not possibly have direct effect on Y.

The power of graphs lies in offering investigators a transparent language to reason
about, to discuss the plausibility of such assumptions and, when consensus is not reached,
to isolate differences of opinion and identify what additional observations would be needed
to resolve differences. This facility is lacking in the potential-outcome approach where, for
most investigators, “strong ignorability” remains a mystical black box.

In addition to serving as carriers of substantive judgments, graphs also offer one the
ability to reject large classes of models without testing each member of the class. For
example, all models in which V and W1 are the sole parents of X, thus rendering 5V, W16

(as well as C) admissible, could be rejected at once if the condition does
not hold in the data.

In Chapter 3, for example, we demonstrated how the measurement of an additional
variable, mediating between X and Y, was sufficient for identifying the causal effect of
X on Y. This facility can also be demonstrated in Figure 11.8(b); measurement of a vari-
able Z judged to be on the pathway between X and Y would render identifi-
able and estimable through equation (3.29). This is predicated, of course, on Fig-
ure 11.8(b) being the correct data-generating model. If, on the other hand, it is Figure 11.9
that represents the correct model, the causal effect would be given by 

 � a z1, w1, w2 P(y � x, z1, w1, w2) P(z1, w1, w2),

 P(y � do(x)) �a paX 
P(y � paX, x)P(paX)

P(y � do(x))

X��Z1 � V, W1
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Figure 11.9 A model that is dependence-wise indistin-
guishable from that of Figure 11.8 (b), in which the irre-
ducible sets 5Z1, W1, W26, 5W1, W2, V6, and 5W1, W2, Z26
are admissible.

Z 1 2Z2WW1

X Y

V

6 Semi-Markovian models may also be distinguished by functional relationships that are not
expressible as conditional independencies (Verma and Pearl 1990; Tian and Pearl 2002b; Shpitser
and Pearl 2008). We do not consider these useful constraints in this example.



which might or might not agree with equation (3.29). In the latter case, we would have
good reason to reject the model in Figure 11.9 as inconsistent, and seek perhaps addi-
tional measurements to confirm or refute Figure 11.8(b).

Auxiliary experiments may offer an even more powerful discriminatory tool than
auxiliary observations. Consider variable W1 in Figure 11.8(b). If we could conduct a
controlled experiment with W1 randomized, instead of X, the data obtained would enable
us to estimate the causal effect of X on Y with no bias (see Section 3.4.4). At the very
least, we would be able to discern whether W1 is a parent of X, as in Figure 11.9, or an
indirect ancestor of X, as in Figure 11.8(b).

In an attempt to adhere to traditional statistical methodology, some causal analysts
have adopted a method called “sensitivity analysis” (e.g., Rosenbaum 2002, pp. 105–170),
which gives the impression that causal assumptions are not invoked in the analysis. This,
of course, is an illusion. Instead of drawing inferences by assuming the absence of certain
causal relationships in the model, the analyst tries such assumptions and evaluates how
strong alternative causal relationships must be in order to explain the observed data. The
result is then submitted to a judgment of plausibility, the nature of which is no different
from the judgments invoked in positing a model like the one in Figure 11.9. In its richer
setting, sensitivity analysis amounts to loading a diagram with causal relationships whose
strength is limited by plausibility judgments and, given the data, attempting to draw con-
clusions without violating those plausibility constraints. It is a noble endeavor, which thus
far has been limited to problems with a very small number of variables. The advent of dia-
grams promises to expand the applicability of this method to more realistic problems. 

11.3.5 Understanding Propensity Scores

The method of propensity score (Rosenbaum and Rubin 1983), or propensity score
matching (PSM), is the most developed and popular strategy for causal analysis in obser-
vational studies. It is not emphasized in this book, because it is an estimation method,
designed to deal with the variability of finite samples, but does not add much to our
understanding of the asymptotic, large-sample limits, which is the main focus of the
book. However, due to the prominence of the propensity score method in causal analy-
sis, and recent controversies surrounding its usage, we devote this section to explain
where it falls in the grand scheme of graphical models, admissibility, identifiability, bias
reduction, and the statistical vs. causal dichotomy.

The method of propensity score is based on a simple, yet ingenious, idea of purely
statistical character. Assuming a binary action (or treatment) X, and an arbitrary set S of
measured covariates, the propensity score L(s) is the probability that action X � 1 will
be chosen by a participant with characteristics S � s, or

(11.9)

What Rosenbaum and Rubin showed is that, viewing L(s) as a function of S, hence,
as a random variable, X and S are independent given L(s), that is, In words,
all units that map into the same value of L(s) are comparable, or “balanced,” in the sense
that, within each stratum of L, treated and untreated units have the same distribution of
characteristics S.7

X��S � L(s).

L(s) � P(X � 1 � S � s).
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7 This independence emanates from the special nature of the function L(s) and is not represented in
the graph, i.e., if we depict L as a child of S, L would not in general d-separate S from X.




