
useful conclusion: Whenever a set of covariates Z exists that satisfies the back-door
criterion, ETT can be estimated from observational studies. This follows directly from

which allows us to write

The graphical demystification of “strong ignorability” also helps explain why the prob-
ability of causation and, in fact, any counterfactual expression condi-
tioned on y, would not permit such a derivation and is, in general, non-identifiable (see
Chapter 9).

11.3.3 Alternative Proof of the Back-Door Criterion

The original proof of the back-door criterion (Theorem 3.3.2) used an auxiliary inter-
vention node F (Figure 3.2) and was rather indirect. An alternative proof is presented
below, where the need for restricting Z to nondescendants of X is transparent.

Proof of the Back-Door Criterion

Consider a Markovian model G in which T stands for the set of parents of X. From equa-
tion (3.13), we know that the causal effect of X on Y is given by

. (11.6)

Now assume some members of T are unobserved. We seek another set Z of observed
variables, to replace T so that 

. (11.7)

It is easily verified that (11.7) follow from (11.6) if Z satisfies:

(i)

(ii)

Indeed, conditioning on Z, (i) permits us to rewrite (11.6) as

and (ii) further yields P(z ƒ t, x) � P(z ƒ t), from which (11.7) follows.
It is now a purely graphical exercise to prove that the back-door criterion implies (i)

and (ii). Indeed, (ii) follows directly from the fact that Z consists of nondescendants of X,
while the blockage of all back-door paths by Z implies hence (i). This
follows from observing that any path from Y to T in G that is unblocked by 5X, Z6 can
be extended to a back-door path from Y to X, unblocked by Z.

(Y��T � X, Z)G,

P(y � x̂) � a
t

P(t)a
z

P(y � z, x)P(z � t, x),

(X �� Z � T).

(Y �� T � X, Z)

P(y � x̂) � a
z�Z

P(y � x, z)P(z)

P(y � x̂) � a
t�T

P(y � x, t)P(t)

P(Yx� � y� � x, y)

 �a z
 P(y � x�, z)P(z � x).

 �a z
 P(Yx� � y � x�, z)P(z � x)

 �a z P(Yx� � y � x, z)P(z � x)

ETT � P(Yx� � y � x)

(Y �� X � Z)GX
 1  Yx� �� X � Z,
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On Recognizing Admissible Sets of Deconfounders

Note that conditions (i) and (ii) allow us to recognize a set Z as admissible (i.e., satisfy-
ing equation (11.7)) starting from any other admissible T, not necessarily the parents of
X. The parenthood status of T was used merely to established (11.6) but played no role
in replacing T with Z to establish (11.7). Still, starting with the parent set T has the
unique advantage of allowing us to recognize every other admissible set Z via (i) and (ii).
For any other starting set, T, there exists an admissible Z that does not satisfy (i) and (ii).
For an obvious example, choosing X’s parents for Z would violate (i) and (ii) because
no set can d-separate X from its parents as would be required by (i).

Note also that conditions (i) and (ii) are purely statistical, invoking no knowledge of
the graph or any other causal assumption. It is interesting to ask, therefore, whether there
are general independence conditions, similar to (i) and (ii), that connect any two admissi-
ble sets, S1 and S2. A partial answer is given by the Stone–Robins criterion (page 187) for
the case where S1 is a subset of S2; another is provided by the following observation.

Define two subsets, S1 and S2, as c-equivalent (“c” connotes “confounding”) if the
following equality holds:

(11.8)

This equality guarantees that, if adjusted for, sets S1 and S2 would produce the same bias
relative to estimating the causal effect of X on Y.
Claim: A sufficient condition for c-equivalence of S1 and S2 is that either one of the fol-
lowing two conditions holds:

C1 : and
C2 : and

C1 permits us to derive the right-hand side of equation (11.8) from the left-hand side,
while C2 permits us to go the other way around. Therefore, if S1 is known to be admis-
sible, the admissibility of S2 can be confirmed by either C1 or C2. This broader condi-
tion allows us, for example, to certify S2 � PAX as admissible from any other admissi-
ble set S1, since condition C2 would be satisfied by any such choice.

This broader condition still does not characterize all c-equivalent pairs, S1 and S2.
For example, consider the graph in Figure 11.8(a), in which each of S1 � 5Z1, W26 and

Y �� S2 � S1, X.X �� S1 � S2

Y �� S1 � S2, XX �� S2 � S1

a
s1

P(y � x, s1)P(s1) � a
s2

P(y � x, s2)P(s2).
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Figure 11.8 (a) S1 � 5Z1, W26 and S2 � 5Z2, W16 are each admissible yet not satisfying C1 or C2.
(b) No subset of C � 5Z1, Z2, W1, W2, V6 is admissible.



S2 � 5Z2, W26 is admissible (by virtue of satisfying the back-door criterion), hence S1
and S2 are c-equivalent. Yet neither C1 nor C2 holds in this case.

A natural attempt would be to impose the condition that S1 and S2 each be c-equiva-
lent to and invoke the criterion of  Stone (1993)  and Robins (1997) for the
required set-subset equivalence. The resulting criterion, while valid, is still not complete;
there are cases where S1 and S2 are c-equivalent yet not c-equivalent to their union. A
theorem by Pearl and Paz (2008) broadens this condition using irreducible sets.

Having given a conditional-independence characterization of c-equivalence does not
solve, of course, the problem of identifying admissible sets; the latter is a causal notion
and cannot be given statistical characterization. 

The graph depicted in Figure 11.8(b) demonstrates the difficulties commonly faced
by social and health scientists. Suppose our target is to estimate P(y ƒ do(x)) given
measurements on 5X, Y, Z1, Z2, W1, W2, V6, but having no idea of the underlying graph
structure. The conventional wisdom is to start with all available covariates C � 5Z1, Z2,
W1, W2, V6, and test if a proper subset of C would yield an equivalent estimand upon
adjustment. Statistical methods for such reduction are described in Greenland et al.
(1999b), Geng et al. (2002), and Wang et al. (2008). For example, 5Z1, V6, 5Z2, V6, or 
5Z1, Z26 can be removed from C by successively applying conditions C1 and C2. This
reduction method would produce three irreducible subsets, 5Z1, W1, W26, 5Z2, W1, W26,
and 5V, W1, W26, all c-equivalent to the original covariate set C. However, none of these
subsets is admissible for adjustment, because none (including C) satisfies the back-door
criterion. While a theorem due to Tian et al. (1998) assures us that any c-equivalent sub-
set of a set C can be reached from C by a step-at-a-time removal method, going through
a sequence of c-equivalent subsets, the problem of covariate selection is that, lacking the
graph structure, we do not know which (if any) of the many subsets of C is admissible.
The next subsection discusses how external knowledge, as well as more refined analysis
of the data at hand, can be brought to bear on the problem.

11.3.4 Data vs. Knowledge in Covariate Selection

What then can be done in the absence of a causal graph? One way is to postulate a plau-
sible graph, based on one’s understanding of the domain, and check if the data refutes
any of the statistical claims implied by that graph. In our case, the graph of Figure 11.8(b)
advertises several such claims, cast as conditional independence constraints, each asso-
ciated with a missing arrow in the graph:

Satisfying these constraints does not establish, of course, the validity of the causal
model postulated because, as we have seen in Chapter 2, alternative models may exist
which satisfy the same independence constraints yet embody markedly different causal
structures, hence, markedly different admissible sets and effect estimands. A trivial
example would be a complete graph, with arbitrary orientation of arrows which, with a
clever choice of parameters, can emulate any other graph. A less trivial example, one
that is not sensitive to choice of parameters, lies in the class of equivalent structures, in

X �� 5V, Z26 � Z1, W1, W2.X �� Z2 � Z, W1, W2V �� W1

Z1 �� W2 � W1Z1 �� Z2 � V, W1, W2V �� Y � X, Z2, W2

Z2 �� W1 � W2V �� W2V �� X � Z1, W1

S1 � S2
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