
because the graph applicable for this task is given in Figure 11.6; F becomes a
descendant of X, and is excluded by the back-door criterion.

2. If the explanation of confounding and sufficiency sounds at variance with tradi-
tional epidemiology, it is only because traditional epidemiologists did not have
proper means of expressing the operations of blocking or creating dependencies.
They might have had a healthy intuition about dependencies, but graphs trans-
late this intuition into a formal system of closing and opening paths.

We should also note that before 1985, causal analysis in epidemiology was in a
state of confusion, because the healthy intuitions of leading epidemiologists had
to be expressed in the language of associations – an impossible task. Even the
idea that confounding stands for “bias,” namely, a “difference between two
dependencies, one that we wish to measure, the other that we do measure,” was
resisted by many (see Chapter 6), because they could not express the former
mathematically.3

Therefore, instead of finding “something in graph language that is closer to tra-
ditional meaning,” we can do better: explicate what that “traditional meaning”
ought to have been.

In other words, traditional meaning was informal and occasionally misguided,
while graphical criteria are formal and mathematically proven.

Chapter 6 (pp. 183, 194) records a long history of epidemiological intuitions,
some by prominent epidemiologists, that have gone astray when confronted with
questions of confounding and adjustment (see Greenland and Robins 1986;
Wickramaratne and Holford 1987; Weinberg 1993). Although most leading epi-
demiologists today are keenly attuned to modern developments in causal analy-
sis, (e.g., Glymour and Greenland 2008), epidemiological folklore is still per-
meated with traditional intuitions that are highly suspect. (See Section 6.5.2.)

In summary, graphical criteria, as well as principles 1–3 above, give us a sensi-
ble, friendly, and unambiguous interpretation of the “traditional meaning of epi-
demiological concepts.”

11.3.2 Demystifying “Strong Ignorability”

Researchers working within the confines of the potential-outcome language express the
condition of “zero bias” or “no-confounding” using an independence relationship called
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3 Recall that Greenland and Robins (1986) were a lone beacon of truth for many years, and even
they had to resort to the “black-box” language of “exchangeability” to define “bias,” which dis-
couraged intuitive interpretations of confounding (see Section 6.5.3). Indeed, it took epidemiolo-
gists another six years (Weinberg 1993) to discover that adjusting for factors affected by the exposure
(as in Figure 11.5) would introduce bias.
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Figure 11.6 Graph applicable for accessing the effect of X on Y.
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“strong ignorability” (Rosenbaum and Rubin 1983). Formally, if X is a binary treatment
(or action), strong ignorability is written as:

, (11.4)

where Y(0) and Y(1) are the (unobservable) potential outcomes under actions do(X � 0)
and do(X � 1), respectively (see equation (3.51) for definition), and Z is a set of meas-
ured covariates. When “strong ignorability” holds, Z is admissible, or deconfounding,
that is, treatment effects can be estimated without bias using the adjustment estimand,
as shown in the derivation of equation (3.54).

Strong ignorability, as the derivation shows, is a convenient syntactic tool for manip-
ulating counterfactual formulas, as well as a convenient way of formally assuming
admissibility (of Z) without having to justify it. However, as we have noted several times
in this book, hardly anyone knows how to apply it in practice, because the counterfactu-
al variables Y(0) and Y(l) are unobservable, and scientific knowledge is not stored in a
form that allows reliable judgment about conditional independence of counterfactuals. It
is not surprising, therefore, that “strong ignorability” is used almost exclusively as a sur-
rogate for the assumption “Z is admissible,” that is,

(11.5)

and rarely, if ever, as a criterion to protect us from bad choices of Z.4

Readers enlightened by graphical models would recognize immediately that equa-
tion (11.4) must mirror the back-door criterion (p. 79, Definition 3.3.1), since the latter too
entails admissibility. This recognition allows us not merely to pose equation (11.4) as a
claim, or an assumption, but also to reason about the cause–effect relationships that ren-
der it valid.

The question arises, however, whether the variables Y(0) and Y(l) could be represent-
ed in the causal graph in a way that would allow us to test equation (11.4) by graphical
means, using d-separation. In other words, we seek a set W of nodes such that Z would
d-separate X from W if and only if Z satisfies equation (11.4).

The answer follows directly from the rules of translation between graphs and poten-
tial outcome (Section 3.6.3). According to this translation, 5Y(0), Y(l)6 represents the
sum total of all exogenous variables, latent as well as observed, which can influence Y
through paths that avoid X. The reason is as follows: according to the structural definition
of 5Y(0),Y(1)6 (equation (3.51)), Y(0) (similarly Y(l)) represents the value of Y under a
condition where all arrows entering X are severed, and X is held constant at X � 0.
Statistical variations of Y(0) would therefore be governed by all exogenous ancestors of
Y in the mutilated graphs with the arrows entering X removed.

In Figure 11.4, for example, 5Y(0), Y(l)6 will be represented by the exogenous variables
5e1, e2, e3, e46. In Figure 3.4, as another example, 5Y(0), Y(1)6 will be represented by the
noise factors (not shown in the graph) that affect variables X4, X1, X2, X5, and X6. However,

P(y � do(x)) � a
z

P(y � z, x)P(z),

5Y(0), Y(1)6 �� X � Z
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4 In fact, in the rare cases where “strong ignorability” is used to guide the choice of covariates, the
guidelines issued are wrong or inaccurate, perpetuating myths such as: “there is no reason to avoid
adjustment for a variable describing subjects before treatment,” “a confounder is any variable asso-
ciated with both treatment and disease,” and “strong ignorability requires measurement of all
covariates related to both treatment and outcome” (citations withheld to spare embarrassment).



since variables X4 and X5 summarize (for Y) the variations of their ancestors, a sufficient set
for representing 5Y(0), Y(l)6 would be X4, X1 and the noise factors affecting Y and X6.

In summary, the potential outcomes 5Y(0), Y(l)6 are represented by the observed and
unobserved parents5 of all nodes on paths from X to Y. Schematically, we can represent these
parents as in Figure 11.7(a). It is easy to see that, with this interpretation of 5Y(0), Y(1)6, a
set of covariates Z d-separates W from X if and only if Z satisfies the back-door criterion. 

It should be noted that the set of observable variables designated W in Figure 11.7(a)
are merely surrogates of the unobservable counterfactuals 5Y(0), Y(l)6 for the purpose of
confirming conditional independencies (e.g., equation (11.4)) in the causal graph (via 
d-separation.) A more accurate allocation of 5Y(0), Y(l)6 is given in Figure 11.7(b),
where they are shown as (dummy) parents of Y that are functions of, though not identi-
cal to, the actual (observable) parents of Y and S.

Readers versed in structural equation modeling would recognize the graphical
representations 5Y(0), Y(1)6 as a refinement of the classical economentric notion of “dis-
turbance,” or “error term” (in the equation for Y), and “strong ignorability” as the
requirement that, for X to be “exogenous,” it must be independent of this “disturbance”
(see Section 5.4.3). This notion fell into ill repute in the 1970s (Richard 1980) together
with the causal interpretation of econometric equations, and I have predicted its re-
acceptance (p. 170) in view of the clarity that graphical models shine on the structural
equation formalism. Figure 11.7 should further help this acceptance.

Having translated “strong ignorability” into a simple separation condition in a model
that encodes substantive process knowledge should demystify the nebulous concept of
“strong ignorability” and invite investigators who speak “ignorability” to benefit from
its graphical interpretation.

This interpretation permits researchers to understand what conditions covariates must
fulfill before they eliminate bias, what to watch for and what to think about when covari-
ates are selected, and what experiments we can do to test, at least partially, if we have the
knowledge needed for covariate selection. Section 11.3.4 exemplifies such considerations.

One application where the symbiosis between the graphical and counterfactual
frameworks has been useful is in estimating the effect of treatments on the treated:
ETT = (see Sections 8.2.5 and 11.9.1). This counterfactual quantity (e.g.,
the probability that a treated person would recover if not treated, or the rate of
disease among the exposed, had the exposure been avoided) is not easily analyzed in the
do-calculus notation. The counterfactual notation, however, allows us to derive a

P(Yx� � y � x)
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Figure 11.7 Graphical interpretation of counterfactuals 5Y(0), Y(l)6 in the “strong ignorability”
condition.

5 The reason for explicitly including latent parents is explained in Section 11.3.1.



useful conclusion: Whenever a set of covariates Z exists that satisfies the back-door
criterion, ETT can be estimated from observational studies. This follows directly from

which allows us to write

The graphical demystification of “strong ignorability” also helps explain why the prob-
ability of causation and, in fact, any counterfactual expression condi-
tioned on y, would not permit such a derivation and is, in general, non-identifiable (see
Chapter 9).

11.3.3 Alternative Proof of the Back-Door Criterion

The original proof of the back-door criterion (Theorem 3.3.2) used an auxiliary inter-
vention node F (Figure 3.2) and was rather indirect. An alternative proof is presented
below, where the need for restricting Z to nondescendants of X is transparent.

Proof of the Back-Door Criterion

Consider a Markovian model G in which T stands for the set of parents of X. From equa-
tion (3.13), we know that the causal effect of X on Y is given by

. (11.6)

Now assume some members of T are unobserved. We seek another set Z of observed
variables, to replace T so that 

. (11.7)

It is easily verified that (11.7) follow from (11.6) if Z satisfies:

(i)

(ii)

Indeed, conditioning on Z, (i) permits us to rewrite (11.6) as

and (ii) further yields P(z ƒ t, x) � P(z ƒ t), from which (11.7) follows.
It is now a purely graphical exercise to prove that the back-door criterion implies (i)

and (ii). Indeed, (ii) follows directly from the fact that Z consists of nondescendants of X,
while the blockage of all back-door paths by Z implies hence (i). This
follows from observing that any path from Y to T in G that is unblocked by 5X, Z6 can
be extended to a back-door path from Y to X, unblocked by Z.

(Y��T � X, Z)G,

P(y � x̂) � a
t

P(t)a
z

P(y � z, x)P(z � t, x),

(X �� Z � T).

(Y �� T � X, Z)

P(y � x̂) � a
z�Z

P(y � x, z)P(z)

P(y � x̂) � a
t�T

P(y � x, t)P(t)

P(Yx� � y� � x, y)

 �a z
 P(y � x�, z)P(z � x).

 �a z
 P(Yx� � y � x�, z)P(z � x)

 �a z P(Yx� � y � x, z)P(z � x)

ETT � P(Yx� � y � x)

(Y �� X � Z)GX
 1  Yx� �� X � Z,
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