
The governing physical equations remain the same as equation (11.1), but, written in the
new coordinate system, they read

.
(11.3)

The primed coefficients can be obtained from the original (unprimed) coefficients by
matrix multiplication. Likewise, we have:

.

Since and are uncorrelated, and will be correlated, and we no
longer have the condition that the components of the current state, and are
uncorrelated conditioned on the components of the previous state, and

Thus, the statistical time (if there is one) no longer runs along the physical
time.

Now we need to show that we can choose the parameters a, b, c, and d in such a way
as to have the statistical time run opposite to the physical time, namely, to make the com-
ponents of the current state, and uncorrelated conditioned on the components
of the future state, and 

By inverting equation (11.3) we can express and in terms of lin-
ear combinations of , and Clearly, since e(t) and h(t) are uncorre-
lated, we can choose a, b, c, d in such a way that the noise term appearing in the

equation is uncorrelated with the one appearing in the equation.
(This is better demonstrated in matrix calculus.)

Thus, the general principle for selecting the alternative coordinate system is to
diagonalize the noise correlation matrix in the reverse direction.

I hope that readers will undertake the challenge of testing the Temporal Bias Con-
jecture (p. 59):

“In most natural phenomenon, the physical time coincides with at least one
statistical time.”

Alex Balke (personal communication) tried to test it with economic time series, but the
results were not too conclusive, for lack of adequate data. I still believe the conjecture
to be true, and I hope readers will have better luck.

11.3 ESTIMATING CAUSAL EFFECTS

11.3.1 The Intuition behind the Back-Door Criterion (Chapter 3, p. 79)
Question to Author:

In the definition of the back-door condition (p. 79, Definition 3.3.1), the exclusion of X’s
descendants (Condition (i)) seems to be introduced as an after fact, just because we get
into trouble if we don’t. Why can’t we get it from first principles; first define sufficiency
of Z in terms of the goal of removing bias, and then show that, to achieve this goal, we
neither want nor need descendants of X in Z.

Y�(t � 1)X�(t � 1)

h�(t).X�(t), Y�(t), P�(t)
Y�(t � 1)X�(t � 1)

Y�(t � 1).X�(t � 1)
Y�(t),X�(t)

Y�(t � 1).
X�(t � 1)

Y�(t),X�(t)
h�(t)P�(t)h(t)P(t)

h�(t) � cP(t) � dh(t)

P�(t) � aP(t) � bh(t)

Y�(t) � g�X�i(t � 1) � d�Y�(t � 1) � h�(t)

X�(t) � ��X�(t � 1) � ��Y(t � 1) � P�(t)
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Author’s Answer:

The exclusion of descendants from the back-door criterion is indeed based on first prin-
ciples, in terms of the goal of removing bias. The principles are as follows: We wish to
measure a certain quantity (causal effect) and, instead, we measure a dependency P(y ƒƒ x)
that results from all the paths in the diagram; some are spurious (the back-door paths),
and some are genuinely causal (the directed paths from X to Y). Thus, to remove bias,
we need to modify the measured dependency and make it equal to the desired quantity.
To do this systematically, we condition on a set Z of variables while ensuring that:

1. We block all spurious paths from X to Y,

2. We leave all directed paths unperturbed,

3. We create no new spurious paths.

Principles 1 and 2 are accomplished by blocking all back-door paths and only those
paths, as articulated in condition (ii). Principle 3 requires that we do not condition on
descendants of X, even those that do not block directed paths, because such descendants
may create new spurious paths between X and Y. To see why, consider the graph

.

The intermediate variables, S1, S2,…, (as well as Y) are affected by noise factors e0, el,
e2,. . . which are not shown explicitly in the diagram. However, under magnification, the
chain unfolds into the graph in Figure 11.4.

Now imagine that we condition on a descendant Z of S1 as shown in Figure 11.5.
Since S1 is a collider, this creates dependency between X and e1 which is equivalent to a
back-door path

.

By principle 3, such paths should not be created, for it introduces spurious dependence
between X and Y.

Note that a descendant Z of X that is not also a descendant of some Si escapes this
exclusion; it can safely be conditioned on without introducing bias (though it may
decrease the efficiency of the associated estimator of the causal effect of X on Y). Section

X 4  e1S S1S S2S S3S Y

XS S1S S2S S3S Y
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e1e0 e4

S2 S3

e3e2

S1X Y

Figure 11.4 Showing the noise factors on the
path from X to Y.

Z

e0 e4e1

S2 S3

e3e2

X S1 Y

Figure 11.5 Conditioning on Z creates
dependence between X and e1, which biases the
estimated effect of X on Y.



11.3.3 provides an alternative proof of the back-door criterion where the need to exclude
descendants of X is even more transparent.

It is also important to note that the danger of creating new bias by adjusting for
wrong variables can threaten randomized trials as well. In such trials, investigators may
wish to adjust for covariates despite the fact that, asymptotically, randomization neu-
tralizes both measured and unmeasured confounders. Adjustment may be sought either
to improve precision (Cox 1958, pp. 48–55), or to match imbalanced samples, or to
obtain covariate-specific causal effects. Randomized trials are immune to adjustment-
induced bias when adjustment is restricted to pre-treatment covariates, but adjustment
for post-treatment variables may induce bias by the mechanism shown in Figure 11.5 or,
more severely, when correlation exists between the adjusted variable Z and some factor
that affects outcome (e.g., e4 in Figure 11.5).

As an example, suppose treatment has a side effect (e.g., headache) in patients who
are predisposed to disease Y. If we wish to adjust for disposition and adjust instead for
its proxy, headache, a bias would emerge through the spurious path: treatment S
headache d predisposition S disease. However, if we are careful never to adjust for any
consequence of treatment (not only those that are on the causal pathway to disease), no
bias will emerge in randomized trials.

Further Questions from This Reader:

This explanation for excluding descendants of X is reasonable, but it has two short-
comings:

1. It does not address cases such as

,

which occur frequently in epidemiology, and where tradition permits the adjust-
ment for Z � 5C, F6.

2. The explanation seems to redefine confounding and sufficiency to represent
something different from what they have meant to epidemiologists in the past
few decades. Can we find something in graph theory that is closer to their tradi-
tional meaning?

Author’s Answer

1. Epidemiological tradition permits the adjustment for Z � (C, F) for the task of
testing whether X has a causal effect on Y, but not for estimating the magnitude
of that effect. In the former case, while conditioning on F creates a spurious path
between C and the noise factor affecting Y, that path is blocked upon condition-
ing on C. Thus, conditioning on Z � 5C, F6 leaves X and Y independent. If we
happen to measure such dependence in any stratum of Z, it must be that the
model is wrong, i.e., either there is a direct causal effect of X on Y, or some other
paths exist that are not shown in the graph.

Thus, if we wish to test the (null) hypothesis that there is no causal effect of X
on Y, adjusting for Z � 5C, F6 is perfectly legitimate, and the graph shows it
(i.e., C and F are nondescendant of X). However, adjusting for Z is not legiti-
mate for assessing the causal effect of X on Y when such effect is suspected,

Xd CS YS F
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because the graph applicable for this task is given in Figure 11.6; F becomes a
descendant of X, and is excluded by the back-door criterion.

2. If the explanation of confounding and sufficiency sounds at variance with tradi-
tional epidemiology, it is only because traditional epidemiologists did not have
proper means of expressing the operations of blocking or creating dependencies.
They might have had a healthy intuition about dependencies, but graphs trans-
late this intuition into a formal system of closing and opening paths.

We should also note that before 1985, causal analysis in epidemiology was in a
state of confusion, because the healthy intuitions of leading epidemiologists had
to be expressed in the language of associations – an impossible task. Even the
idea that confounding stands for “bias,” namely, a “difference between two
dependencies, one that we wish to measure, the other that we do measure,” was
resisted by many (see Chapter 6), because they could not express the former
mathematically.3

Therefore, instead of finding “something in graph language that is closer to tra-
ditional meaning,” we can do better: explicate what that “traditional meaning”
ought to have been.

In other words, traditional meaning was informal and occasionally misguided,
while graphical criteria are formal and mathematically proven.

Chapter 6 (pp. 183, 194) records a long history of epidemiological intuitions,
some by prominent epidemiologists, that have gone astray when confronted with
questions of confounding and adjustment (see Greenland and Robins 1986;
Wickramaratne and Holford 1987; Weinberg 1993). Although most leading epi-
demiologists today are keenly attuned to modern developments in causal analy-
sis, (e.g., Glymour and Greenland 2008), epidemiological folklore is still per-
meated with traditional intuitions that are highly suspect. (See Section 6.5.2.)

In summary, graphical criteria, as well as principles 1–3 above, give us a sensi-
ble, friendly, and unambiguous interpretation of the “traditional meaning of epi-
demiological concepts.”

11.3.2 Demystifying “Strong Ignorability”

Researchers working within the confines of the potential-outcome language express the
condition of “zero bias” or “no-confounding” using an independence relationship called
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3 Recall that Greenland and Robins (1986) were a lone beacon of truth for many years, and even
they had to resort to the “black-box” language of “exchangeability” to define “bias,” which dis-
couraged intuitive interpretations of confounding (see Section 6.5.3). Indeed, it took epidemiolo-
gists another six years (Weinberg 1993) to discover that adjusting for factors affected by the exposure
(as in Figure 11.5) would introduce bias.

X Y F

C

Figure 11.6 Graph applicable for accessing the effect of X on Y.




