
C H A P T E R E L E V E N

Reflections, Elaborations, and 
Discussions with Readers

As X-rays are to the surgeon,
graphs are for causation.

The author

In this chapter, I reflect back on the material covered in Chapters 1 to 10, discuss issues
that require further elaboration, introduce new results obtained in the past eight years,
and answer questions of general interest posed to me by readers of the first edition.
These range from clarification of specific passages in the text, to conceptual and philo-
sophical issues concerning the controversial status of causation, how it is taught in class-
rooms and how it is treated in textbooks and research articles. 

The discussions follow roughly the order in which these issues are presented in the
book, with section numbers indicating the corresponding chapters.

11.1 CAUSAL, STATISTICAL, AND GRAPHICAL VOCABULARY

11.1.1 Is the Causal–Statistical Dichotomy Necessary? 
Question to Author (from many readers)
Chapter 1 (Section 1.5) insists on a sharp distinction between statistical and causal con-
cepts; the former are definable in terms of a joint distribution function (of observed vari-
ables), the latter are not. Considering that many concepts which the book classifies as
“causal” (e.g., “randomization,” “confounding,” and “instrumental variables”) are com-
monly discussed in the statistical literature, is this distinction crisp? Is it necessary? Is it
useful?

Author Answer

The distinction is crisp,1 necessary, and useful, and, as I tell audiences in all my lectures:
“If you get nothing out of this lecture except the importance of keeping statistical and
causal concepts apart, I would consider it a success.” Here, I would dare go even further:

331

1 The basic distinction has been given a variety of other nomenclatures, e.g., descriptive vs. etio-
logical, associational vs. causal, empirical vs. theoretical, observational vs. experimental, and
many others. I am not satisfied with any of these surrogates, partly because they were not as crisply
defined, partly because their boundaries got blurred through the years, and partly because the con-
catenation “nonstatistical” triggers openness to new perspectives.
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“If I am remembered for no other contribution except for insisting on the causal–statistical
distinction, I would consider my scientific work worthwhile.”

The distinction is embarrassingly crisp and simple, because it is based on the funda-
mental distinction between statics and kinematics. Standard statistical analysis, typified
by regression, estimation, and hypothesis-testing techniques, aims to assess parameters
of a static distribution from samples drawn of that distribution. With the help of such
parameters, one can infer associations among variables, estimate the likelihood of past
and future events, as well as update the likelihood of events in light of new evidence or
new measurements. These tasks are managed well by standard statistical analysis so
long as experimental conditions remain the same. Causal analysis goes one step further;
its aim is to infer not only the likelihood of events under static conditions, but also the
dynamics of events under changing conditions, for example, changes induced by treat-
ments or external interventions, or by new policies or new experimental designs.

This distinction implies that causal and statistical concepts do not mix. There is noth-
ing in the joint distribution of symptoms and diseases to tell us that curing the former
would or would not cure the latter. More generally, there is nothing in a distribution
function to tell us how that distribution would differ if external conditions were to
change – say, from observational to experimental setup – because the laws of probability
theory do not dictate how one property of a distribution ought to change when another
property is modified. This information must be provided by extra assumptions that iden-
tify what in the distribution remains invariant when the specified modification takes
place. The sum total of these extra assumptions is what we call “causal knowledge.”

These considerations imply that the slogan “correlation does not imply causation”
can be translated into a useful principle: behind every causal conclusion there must lie
some causal assumption that is not discernible from the distribution function.

Take the concept of randomization – why is it not statistical? Assume we are given
a bivariate density function f(x,y), and we are told that one of the variables is random-
ized; can we tell which one it is by just examining f(x, y)? Of course not; therefore, fol-
lowing our definition, randomization is a causal, not a statistical concept. Indeed, every
randomized experiment is based on external intervention; that is, subjects are “forced”
to take one treatment or another in accordance with the experimental protocol, regard-
less of their natural inclination. The presence of intervention immediately qualifies the
experimental setup, as well as all relationships inferred from that setup, as causal.

Note, however, that the purpose of the causal–statistical demarcation line (as stated in
Section 1.4, p. 40) is not to exclude causal concepts from the province of statistical analy-
sis but, rather, to encourage investigators to treat causal concepts distinctly, with the proper
set of mathematical and inferential tools. Indeed, statisticians were the first to conceive of
randomized experiments, and have used them successfully since the time of Fisher (1926).
However, both the assumptions and conclusions in those studies were kept implicit, in the
mind of ingenious investigators; they did not make their way into the mathematics. For
example, one would be extremely hard pressed to find a statistics textbook, even at the
graduate level, containing a mathematical proof that randomization indeed produces unbi-
ased estimates of the quantities we wish estimated – i.e., efficacy of treatments or policies.

As a related example, very few statistics teachers today can write down a formula stat-
ing that “randomized experiments prove drug x1 to be twice as effective as drug x2.”
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Of course, they can write: P( y ƒ x1)/P(y ƒ x2) ! 2 (y being the desirable outcome), but then
they must keep in mind that this ratio applies to a specific randomized condition, and
should not be confused with likelihood ratios prevailing in observational studies.
Scientific progress requires that such distinctions be expressed mathematically.2

The most important contribution of causal analysis in the past two decades has been
the emergence of mathematical languages in which not merely the data, but the experi-
mental design itself can be given mathematical description. Such description is essential,
in fact, if one wishes the results of one experiment to serve as premises in another, or to
predict outcomes of one design from data obtained under another, or merely to decide if we
are in possession of sufficient knowledge to render such cross-design predictions possible.

Is the Distinction Necessary?

Science thrives on distinctions, especially those that do not readily mix. The distinction
between rational and irrational numbers, for example, is extremely important in number the-
ory, for it spares us futile efforts to define the latter through some arithmetic operations on
the former. The same can be said about the distinctions between prime, composite, alge-
braic, and transcendental numbers. Logicians, among them George Boole (1815–1864)
and Augustus De Morgan (1806–1871), wasted half a century trying to prove syllogisms of
first-order logic (e.g., all men are mortal) using the machinery of propositional logic; the
distinction between the two was made crisp only at the end of the nineteenth century.

A similar situation occurred in the history of causality. Philosophers have struggled for
half a century trying to reduce causality to probabilities (Section 7.5) and have gotten
nowhere, except for traps such as “evidential decision theory” (Section 4.1).
Epidemiologists have struggled for half a century to define “confounding” in the language
of associations (Chapter 6, pp. 183, 194). Some are still struggling (see Section 11.6.4).
This effort could have been avoided by appealing to first principles: If confounding were
a statistical concept, we would have been able to identify confounders from features of
nonexperimental data, adjust for those confounders, and obtain unbiased estimates of
causal effects. This would have violated our golden rule: behind any causal conclusion
there must be some causal assumption, untested in observational studies. That epidemiol-
ogists did not recognize in advance the futility of such attempts is a puzzle that can have
only two explanations: they either did not take seriously the causal–statistical divide, or
were afraid to classify “confounding” – a simple, intuitive concept – as “nonstatistical.”

Divorcing simple concepts from the province of statistics - the most powerful formal
language known to empirical scientists – can be traumatic indeed. Social scientists have
been laboring for half a century to evaluate public policies using statistical analysis,
anchored in regression techniques, and only recently have confessed, with great disap-
pointment, what should have been recognized as obvious in the 1960’s: “Regression analy-
ses typically do nothing more than produce from a data set a collection of conditional
means and conditional variances” (Berk 2004, p. 237). Economists have gone through a
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2 The potential-outcome approach of Neyman (1923) and Rubin (1974) does offer a notational
distinction, by writing for the former, and P(y ƒ x1)/P(y ƒ x2) ! 2 for the
latter. However, the opaqueness of this notation and the incomplete state of its semantics (see Sections
3.6.3 and 11.3.2) have prevented it from penetrating classrooms, textbooks, and laboratories.

P(Yx1
! y)/P(Yx2
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similar trauma with the concept of exogeneity (Section 5.4.3). Even those who recognized
that a strand of exogeneity (i.e., superexogeneity) is of a causal variety came back to define
it in terms of distributions (Maddala 1992; Hendry 1995) – crossing the demarcation line
was irresistible. And we understand why; defining concepts in term of prior and condi-
tional distributions – the ultimate oracles of empirical knowledge – was considered a mark
of scientific prudence. We know better now.

Is the Distinction Useful?

I am fairly confident that today, enlightened by failed experiments in philosophy, epi-
demiology, and economics, no reputable discipline would waste half a century chasing
after a distribution-based definition of another causal concept, however tempted by pru-
dence or intuition. Today, the usefulness of the demarcation line lies primarily in help-
ing investigators trace the assumptions that are needed to support various types of
scientific claims. Since every claim invoking causal concepts must rely on some judg-
mental premises that invoke causal vocabulary, and since causal vocabulary can only be
formulated in causally distinct notation, the demarcation line provides notational tools
for identifying the judgmental assumptions to which every causal claim is vulnerable.

Statistical assumptions, even untested, are testable in principle, given a sufficiently
large sample and sufficiently fine measurements. Causal assumptions, in contrast, cannot
be verified even in principle, unless one resorts to experimental control. This difference
stands out in Bayesian analysis. Though the priors that Bayesians commonly assign to
statistical parameters are untested quantities, the sensitivity to these priors tends to dimin-
ish with increasing sample size. In contrast, sensitivity to prior causal assumptions – say,
that treatment does not change gender – remains high regardless of sample size.

This makes it doubly important that the notation we use for expressing causal
assumptions be meaningful and unambiguous so that scientists can clearly judge the
plausibility or inevitability of the assumptions articulated.

How Does One Recognize Causal Expressions in the Statistical Literature?

Those versed in the potential-outcome notation (Neyman 1923; Rubin 1974; Holland
1988) can recognize such expressions through the subscripts that are attached to coun-
terfactual events and variables, e.g., Yx (u) or Zxy. (Some authors use parenthetical expres-
sions, e.g., Y(x, u) or Z(x, y).) (See Section 3.6.3 for semantics.)

Alternatively, this book also uses expressions of the form P(Y ! y ƒ do(X ! x)) or 
P(Yx ! y) to denote the probability (or frequency) that event (Y ! y) would occur if
treatment condition X ! x were enforced uniformly over the population. (Clearly,
P(Y ! y ƒ do(X ! x)) is equivalent to P(Yx ! y).) Still a third formal notation is provided
by graphical models, where the arrows represent either causal influences, as in
Definition 1.3.1, or functional (i.e., counterfactual) relationships, as in Figure 1.6(c).

These notational devices are extremely useful for detecting and tracing the causal
premises with which every causal inference study must commence. Any causal premise
that is cast in standard probability expressions, void of graphs, counterfactual subscripts,
or do(*) operators, can safely be discarded as inadequate. Consequently, any article describ-
ing an empirical investigation that does not commence with expressions involving graphs,
counterfactual subscripts, or do(*) can safely be proclaimed as inadequately written.
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While this harsh verdict may condemn valuable articles in the empirical literature to
the province of inadequacy, it can save investigators endless hours of confusion and
argumentation in deciding whether causal claims from one study are relevant to another.
More importantly, the verdict should encourage investigators to visibly explicate causal
premises, so that they can be communicated unambiguously to other investigators and
invite professional scrutiny, deliberation, and refinement.

11.1.2 d-Separation without Tears (Chapter 1, pp. 16–18)
At the request of many who have had difficulties switching from algebraic to graphical
thinking, I am including a gentle introduction to d-separation, supplementing the formal
definition given in Chapter 1, pp. 16–18.

Introduction

d-separation is a criterion for deciding, from a given causal graph, whether a set X of
variables is independent of another set Y, given a third set Z. The idea is to associate
“dependence” with “connectedness” (i.e., the existence of a connecting path) and “inde-
pendence” with “unconnectedness” or “separation.” The only twist on this simple idea
is to define what we mean by “connecting path,” given that we are dealing with a sys-
tem of directed arrows in which some vertices (those residing in Z) correspond to meas-
ured variables, whose values are known precisely. To account for the orientations of the
arrows we use the terms “d-separated” and “d-connected” (d connotes “directional”). We
start by considering separation between two singleton variables, x and y; the extension
to sets of variables is straightforward (i.e., two sets are separated if and only if each ele-
ment in one set is separated from every element in the other).

Unconditional Separation

Rule 1: x and y are d-connected if there is an unblocked path between them.

By a “path” we mean any consecutive sequence of edges, disregarding their directional-
ities. By “unblocked path” we mean a path that can be traced without traversing a pair
of arrows that collide “head-to-head.” In other words, arrows that meet head-to-head do
not constitute a connection for the purpose of passing information; such a meeting will
be called a “collider.”

Example 11.1.1 The graph in Figure 11.1 contains one collider, at t. The path 
x – r – s – t is unblocked, hence x and t are d-connected. So also is the path t – u – v –
y, hence t and y are d-connected, as well as the pairs u and y, t and v, t and u, x and s,
etc. However, x and y are not d-connected; there is no way of tracing a path from x
to y without traversing the collider at t. Therefore, we conclude that x and y are 
d-separated, as well as x and v, s and u, r and u, etc. (In linear models, the ramifica-
tion is that the covariance terms corresponding to these pairs of variables will be
zero, for every choice of model parameters.)
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Figure 11.1 A graph containing a 
collider at t.
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