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Readers who wish to be first introduced to the nonmathematical aspects of causation
are advised to start with the Epilogue and then to sweep through the other historical/
conceptual parts of the book: Sections 1.1.1, 3.3.3, 4.5.3, 5.1, 5.4.1, 6.1, 7.2, 7.4, 7.5, 8.3,
9.1, 9.3, and 10.1. More formally driven readers, who may be anxious to delve directly
into the mathematical aspects and computational tools, are advised to start with Sec-
tion 7.1 and then to proceed as follows for tool building: Section 1.2, Chapter 3, Sections
4.2–4.4, Sections 5.2–5.3, Sections 6.2–6.3, Section 7.3, and Chapters 8–10.

I owe a great debt to many people who assisted me with this work. First, I would like
to thank the members of the Cognitive Systems Laboratory at UCLA, whose work and
ideas formed the basis of many of these sections: Alex Balke, Blai Bonet, David Chicker-
ing, Adnan Darwiche, Rina Dechter, David Galles, Hector Geffner, Dan Geiger, Moisés
Goldszmidt, Jin Kim, Jin Tian, and Thomas Verma. Tom and Dan have proven some of
the most basic theorems in causal graphs; Hector, Adnan, and Moisés were responsible
for keeping me in line with the logicist approach to actions and change; and Alex and
David have taught me that counterfactuals are simpler than the name may imply.

My academic and professional colleagues have been very generous with their time
and ideas as I began ploughing the peaceful territories of statistics, economics, epidemi-
ology, philosophy, and the social sciences. My mentors–listeners in statistics have been
Phil Dawid, Steffen Lauritzen, Don Rubin, Art Dempster, David Freedman, and David
Cox. In economics, I have benefited from many discussions with John Aldrich, Kevin
Hoover, James Heckman, Ed Learner, and Herbert Simon. My forays into epidemiol-
ogy resulted in a most fortunate and productive collaboration with Sander Greenland and
James Robins. Philosophical debates with James Woodward, Nancy Cartwright, Brian
Skyrms, Clark Glymour, and Peter Spirtes have sharpened my thinking of causality in
and outside philosophy. Finally, in artificial intelligence, I have benefited from discus-
sions with and the encouragement of Nils Nilsson, Ray Reiter, Don Michie, Joe Halpern,
and David Heckerman.

The National Science Foundation deserves acknowledgment for consistently and faith-
fully sponsoring the research that led to these results, with special thanks to H. Moraff,
Y. T. Chien, and Larry Reeker. Other sponsors include Abraham Waksman of the Air
Force Office of Scientific Research, Michael Shneier of the Office of Naval Research, the
California MICRO Program, Northrop Corporation, Rockwell International, Hewlett-
Packard, and Microsoft.

I would like to thank Academic Press and Morgan Kaufmann Publishers for their
kind permission to reprint selected portions of previously published material. Chapter 3
includes material reprinted from Biometrika, vol. 82, Judea Pearl, “Causal Diagrams
for Empirical Research,” pp. 669–710, Copyright 1995, with permission from Oxford
University Press. Chapter 5 includes material reprinted from Sociological Methods and
Research, vol. 27, Judea Pearl, “Graphs, Causality, and Structural Equation Models,”
pp. 226–84, Copyright 1998, with permission from Sage Publications, Inc. Chapter 7 in-
cludes material reprinted from Foundations of Science, vol. 1, David Galles and Judea
Pearl, “An Axiomatic Characterization of Causal Counterfactuals,” pp. 151–82, Copyright
1998, with permission from Kluwer Academic Publishers. Chapter 7 also includes materi-
al reprinted from Artificial Intelligence, vol. 97, David Galles and Judea Pearl, “Axioms
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Finally, certain concepts that are ubiquitous in human discourse can be defined only
in the Laplacian framework. We shall see, for example, that such simple concepts as “the
probability that event B occured because of event A” and “the probability that event B
would have been different if it were not for event A” cannot be defined in terms of purely
stochastic models. These so-called counterfactual concepts will require a synthesis of
the deterministic and probabilistic components embodied in the Laplacian model.

1.4.1 Structural Equations

In its general form, a functional causal model consists of a set of equations of the form

(1.40)

where pai (connoting parents) stands for the set of variables that directly determine the
value of Xi and where the Ui represent errors (or “disturbances”) due to omitted fac-
tors. Equation (1.40) is a nonlinear, nonparametric generalization of the linear structural
equation models (SEMs)

(1.41)

which have become a standard tool in economics and social science (see Chapter 5 for a
detailed exposition of this enterprise). In linear models, pai corresponds to those vari-
ables on the r.h.s. of (1.41) that have nonzero coefficients.

The interpretation of the functional relationship in (1.40) is the standard interpreta-
tion that functions carry in physics and the natural sciences; it is a recipe, a strategy, or
a law specifying what value nature would assign to Xi in response to every possible value
combination that (PAi, Ui) might take on. A set of equations in the form of (1.40) and in
which each equation represents an autonomous mechanism is called a structural model;
if each variable has a distinct equation in which it appears on the left-hand side (called
the dependent variable), then the model is called a structural causal model or a causal
model for short.13 Mathematically, the distinction between structural and algebraic
equations is that any subset of structural equations is, in itself, a valid structural model –
one that represents conditions under some set of interventions.

To illustrate, Figure 1.5 depicts a canonical econometric model relating price and de-
mand through the equations

(1.42)

(1.43)

where Q is the quantity of household demand for a product A, P is the unit price of prod-
uct A, I is household income, W is the wage rate for producing product A, and U1 and

p � b2q � d2w � u2,

q � b1p � d1i � u1,

xi � a
k�1

�ik xk � ui,   i � 1, p , n,

xi � fi (pai, ui),   i � 1, p , n,

1.4 Functional Causal Models 27

cannot be ignored when the meaning of the concept is in question. Indeed, compliance with hu-
man intuition has been the ultimate criterion of adequacy in every philosophical study of causation,
and the proper incorporation of background information into statistical studies likewise relies on
accurate interpretation of causal judgment.

13 Formal treatment of causal models, structural equations, and error terms are given in Chapter 5
(Section 5.4.1) and Chapter 7 (Sections 7.1 and 7.2.5).
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subject to falsification tests in the form of inequalities on conditional probabilities (Pearl
1995b). Still, such constraints permit the testing of merely a small fraction of the causal
assumptions embodied in the diagrams; the bulk of those assumptions must be substanti-
ated from domain knowledge as obtained from either theoretical considerations (e.g., that
falling barometers do not cause rain) or related experimental studies. For example, the
experimental study of Moertel et al. (1985), which refuted the hypothesis that vitamin C
is effective against cancer, can be used as a substantive assumption in observational stud-
ies involving vitamin C and cancer patients; it would be represented as a missing link
(between vitamin C and cancer) in the associated diagram. In summary, the primary
use of the methods described in this chapter lies not in testing causal assumptions but in
providing an effective language for making those assumptions precise and explicit. As-
sumptions can thereby be isolated for deliberation or experimentation and then (once val-
idated) be integrated with statistical data to yield quantitative estimates of causal effects.

An important issue that will be considered only briefly in this book (see Section 8.5)
is sampling variability. The mathematical derivation of causal effect estimands should be
considered a first step toward supplementing these estimands with confidence intervals and
significance levels, as in traditional analysis of controlled experiments. We should remark,
though, that having obtained nonparametric estimands for causal effects does not imply
that one should refrain from using parametric forms in the estimation phase of the study.
For example, if the assumptions of Gaussian, zero-mean disturbances and additive inter-
actions are deemed reasonable, then the estimand given in (3.28) can be converted to the
product E(Y ƒ ) ! rZXrYZ . Xx, where rYZ . X is the standardized regression coefficient
(Section 5.3.1); the estimation problem then reduces to that of estimating regression co-
efficients (e.g., by least squares). More sophisticated estimation techniques can be found
in Rosenbaum and Rubin (1983), Robins (1989, sec. 17), and Robins et al. (1992, pp.
331–3). For example, the “propensity score” method of Rosenbaum and Rubin (1983) was
found useful when the dimensionality of the adjusted covariates is high (Section 11.3.5).
Robins (1999) shows that, rather than estimating individual factors in the adjustment for-
mula of (3.19), it is often more advantageous to use , where the
preintervention distribution remains unfactorized. One can then separately estimate the
denominator P(x ƒ z), weigh individual samples by the inverse of this estimate, and treat
the weighted samples as if they were drawn at random from the postintervention distri-
bution P(y ƒ ). Postintervention parameters, such as E(Y ƒ ), can then be estimated by
ordinary least squares. This method is especially advantageous in longitudinal studies
with time-varying covariates, as in the problems discussed in Sections 3.2.3 (see (3.18))
and 4.4.3. 

Several extensions of the methods proposed in this chapter are noteworthy. First, the
identification analysis for atomic interventions can be generalized to complex time-varying
policies in which a set X of controlled variables is made to respond in a specified way to
some set Z of covariates via functional or stochastic strategies, as in Sections 3.2.3 and
4.4.3. In Chapter 4 (Section 4.4.3) it is shown that identifying the effect of such policies
requires a sequence of back-door conditions in the associated diagram. 

A second extension concerns the use of the intervention calculus (Theorem 3.4.1) in
nonrecursive models, that is, in causal diagrams involving directed cycles or feedback
loops. The basic definition of causal effects in terms of “wiping out” equations from
the model (Definition 3.2.1) still carries over to nonrecursive systems (Strotz and Wold

x̂0
0xx̂

P(y ! x̂) ! az
P(x, y, z)
P(x ! z)

x̂

3.6 Discussion 95

, called inverse probability weighting,
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the temporally ordered and potentially manipulable treatment variables of interest. The
causal effect of X � x on Y was expressed as the probability

where the counterfactual variable Y(x) stands for the value that outcome variables Y
would take had the treatment variables X been x.

Robins showed that P(y ƒ g � x) is identified from the distribution P(y) if each com-
ponent Xk of X is “assigned at random, given the past,” a notion explicated as follows.
Let Lk be the variables occurring between Xk-1 and Xk, with L1 being the variables pre-
ceding X1, Write � (L1, . . . , Lk), L � , and � (X1, . . . , Xk), and define ,

, to be identically zero. The treatment Xk � xk is said to be assigned at random,
given the past, if the following relation holds:

(Y (x) Xk ƒ ). (3.62)

Robins further proved that, if (3.62) holds for every k, then the causal effect is given
by

(3.63)

an expression he called the “G-computation algorithm formula.” This expression can be
derived by applying condition (3.62) iteratively, as in the derivation of (3.54). If X is
univariate, then (3.63) reduces to the standard adjustment formula

paralleling (3.54). Likewise, in the special structure of Figure 3.3, (3.63) reduces to (3.18).
To place this result in the context of our analysis in this chapter, we need to focus atten-

tion on condition (3.62), which facilitated Robins’s derivation of (3.63), and ask whether
this formal counterfactual independency can be given a meaningful graphical interpretation.
The answer will be given in Chapter 4 (Theorem 4.4.1), where we derive a graphical
condition for identifying the effect of a plan, i.e., a sequential set of actions. The condi-
tion reads as follows: is identifiable and is given by (3.63) if every action-
avoiding back-door path from Xk to Y is blocked by some subset Lk of nondescendants
of Xk. (By “action-avoiding” we mean a path containing no arrow entering an X variable
later than Xk.) Chapter 11 (Section 11.4.2) shows by examples that this “sequential back-
door” criterion is more general than that given in (3.62).

The structural analysis introduced in this chapter supports and generalizes Robins’s
result from a new theoretical perspective. First, on the technical front, this analysis offers
systematic ways of managing models where Robins’s starting assumption (3.62) is inap-
plicable. Examples are Figures 3.8(d)–(g).

Second, on the conceptual front, the structural framework represents a fundamental
shift from the vocabulary of counterfactual independencies, to the vocabulary of

P(y � g � x)

P(y � g � x) � a
l1

P(y � x, l1) P(l1),

P(y � g � x) � a
lk

P(y � lK, xK)q
K

k�1
 P(lk � lk�1, xk�1),

Lk, Xk�1 � xk�1��

V0L0

X0XkLKLk

P(y � g � x) � P5Y(x) � y6,

3.6 Discussion 103
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Phil showed special courage in printing my paper in Biometrika (Pearl 1995a), the jour-
nal founded by causality’s worst adversary – Karl Pearson.

Postscript for the Second Edition

Complete identification results

A key identification condition, which generalizes all the criteria established in this chap-
ter, has been derived by Jin Tian. It reads:

Theorem 3.6.1 (Tian and Pearl, 2002a)

A sufficient condition for identifying the causal effect P(y ƒ do(x)) is that there exists no
bi-directed path (i.e., a path composed entirely of bi-directed arcs) between X and any
of its children.15

Remarkably, the theorem asserts that, as long as every child of X (on the pathways to Y)
is not reachable from X via a bi-directed path, then, regardless of how complicated the
graph, the causal effect P(y ƒ do(x)) is identifiable.  All identification criteria discussed
in this chapter are special cases of the one defined in this theorem. For example, in
Figure 3.5 P(y ƒ do(x)) can be identified because the two paths from X to Z (the only child of
X) are not bi-directed. In Figure 3.7, on the other hand, there is a path from X to Z1 tra-
versing only bi-directed arcs, thus violating the condition of Theorem 3.6.1, and P(y ƒ do(x))
is not identifiable. 

Note that all graphs in Figure 3.8 and none of those in Figure 3.9 satisfy the con-
dition above. Tian and Pearl (2002a) further showed that the condition is both suffi-
cient and necessary for the identification of P(y ƒ do(x)), where V includes all vari-
ables except X. A necessary and sufficient condition for identifying P(w ƒ do(z)), with
W and Z two arbitrary sets, was established by Shpitser and Pearl (2006b).
Subsequently, a complete graphical criterion was established for determining the
identifiability of conditional interventional distributions, namely, expressions of the
type P(y ƒ do(x), z) where X, Y, and Z are arbitrary sets of variables (Shpitser and Pearl
2006a).

These results constitute a complete characterization of causal effects in graphical
models. They provide us with polynomial time algorithms for determining whether an
arbitrary quantity invoking the do(x) operator is identified in a given semi-Markovian
model and, if so, what the estimand of that quantity is. Remarkably, one corollary of these
results also states that the do-calculus is complete, namely, a quantity Q � P(y ƒ do(x), z)
is identified if and only if it can be reduced to a do-free expression using the three rules
of Theorem 3.4.1.16

Applications and Critics

Gentle introductions to the concepts developed in this chapter are given in (Pearl 2003c)
and (Pearl 2008). Applications of causal graphs in epidemiology are reported in Robins

3.6 Discussion 105

15 Before applying this criterion, one may delete from the causal graph all nodes that are not ances-
tors of Y.

16 This was independently established by Huang and Valtorta (2006).
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Proof of Theorem 4.4.1

The proof given here is based on the inference rules of do-calculus (Theorem 3.4.1), which
facilitate the reduction of causal effect formulas to hat-free expressions. An alternative
proof, using latent variable elimination, is given in Pearl and Robins (1995).

Step 1. The condition implies for all Therefore, we have

This is so because no node in 5Z1, … , Zk, X1, … , Xk
16 can be a descendant of any node
in 5Xk, …, Xn6. Hence, Rule 3 allows us to delete the hat variables from the expression.

Step 2. The condition in (4.5) permits us to invoke Rule 2 and write:

Thus, we have

n

Definition 4.4.2 (Admissible Sequence and G-Identifiability)

Any sequence Z1, …, Zn of covariates satisfying the conditions in (4.4)–(4.5) will be
called admissible, and any expression that is identifiable by the
criterion of Theorem 4.4.1 will be called G-identifiable.7

P(y � x̂1, x̂2, p , x̂n)

� a
z1, p, zn

P(y � z1, p , zn, x1, p , xn)q
n

k�1
P(zk � z1, p , zk
1, x1, p , xk
1).

	 P(z1)P(z2 � z1, x1) L P(zn � z1, x1, z2, x2, p , zn
1, xn
1)

� a
zn

L a
z2
a
z1

P(y � z1, p , zn, x1, p , xn)

o

� a
z2
a
z1

P(y � z1, z2, x1, x2, x̂3, p , x̂n)P(z1)P(z2) � z1, x1)

� a
z2
a
z1

P(y � z1, z2, x1, x̂2, p , x̂n)P(z1)P(z2) � z1, x1, x̂2, p , x̂n)

� a
z1

P(y � z1, x1, x̂2, p , x̂n)P(z1)

� a
z1

P(y � z1, x̂1, x̂2, p , x̂n)P(z1 � x̂1, p , x̂n)

P(y � x̂1, p , x̂n)

� P(y � z1, p , zk, x1, p , xk
1, xk, x̂k�1, p , x̂n).

P(y � z1, p , zk, x1, p , xk
1, x̂k, x̂k�1, p , x̂n)

� P(zk � z1, p , zk
1, x1, p , xk
1).

P(zk � z1, p , zk
1, x1, p , xk
1, x̂k, x̂k�1, p , x̂n)

j � k.Zk � NjZk � Nk

4.4 The Identification of Plans 123

7 Note that admissibility (4.5) requires that each subsequence blocks every
“action-avoiding” back-door path from Xk to Y (see page 103).

X1, p , Xk
1, Z1, p , Zk
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with some average of this difference over all departments. This average should measure
the increase in admission rate in a hypothetical experiment in which we instruct all
female candidates to retain their department preferences but change their gender identi-
fication (on the application form) from female to male.

Conceptually, we can define the average direct effect DEx, x�(Y) as the expected
change in Y induced by changing X from x to x� while keeping all mediating factors con-
stant at whatever value they would have obtained under do(x). This hypothetical change,
which Robins and Greenland (1991) called “pure” and Pearl (2001c) called “natural,” is
precisely what lawmakers instruct us to consider in race or sex discrimination cases:
“The central question in any employment-discrimination case is whether the employer
would have taken the same action had the employee been of a different race (age, sex,
religion, national origin etc.) and everything else had been the same.” (In Carson versus
Bethlehem Steel Corp., 70 FEP Cases 921, 7th Cir. (1996)).

Using the parenthetical notation of equation 3.51, Pearl (2001c) gave the following
definition for the “natural direct effect”:

(4.11)

Here, Z represents all parents of Y excluding X, and the expression Y(x�, Z(x)) represents
the value that Y would attain under the operation of setting X to x� and, simultaneously,
setting Z to whatever value it would have obtained under the setting X � x. We see that
DEx, x�(Y), the natural direct effect of the transition from x to x�, involves probabilities of
nested counterfactuals and cannot be written in terms of the do(x) operator. Therefore,
the natural direct effect cannot in general be identified, even with the help of ideal, con-
trolled experiments (see Robins and Greenland 1992 and Section 7.1 for intuitive expla-
nation). Pearl (2001c) has nevertheless shown that, if certain assumptions of “no con-
founding” are deemed valid,9 the natural direct effect can be reduced to

(4.12)

The intuition is simple; the natural direct effect is the weighted average of controlled
direct effects, using the causal effect P(z ƒ do(x)) as a weighing function. Under such
assumptions, the sequential back-door criteria developed in Section 4.4 for identifying
control-specific plans, , become applicable.

In particular, expression (4.12) is both valid and identifiable in Markovian models,
where all do-operators can be eliminated using Corollary 3.2.6; for example,

(4.13)P(z � do(x)) �a
t

 P(z � x, paX � t) P( paX � t)

P( y � x̂1, x̂2, p , x̂n)

DEx, x�(Y ) � a
z

 [E(Y � do(x�, z)) 
 E(Y � do(x, z))] P(z � do(x)).

DEx,x�(Y ) � E[(Y(x�, Z(x))) 
 E(Y(x)].

P(admission � male, dept) 
 P(admission � female, dept)

4.5 Direct and Indirect Effects 131

� � ��

9 One sufficient condition is that holds for some set W of measured covariates.
See details and graphical criteria in Pearl (2001c, 2005a) and in Petersen et al. (2006).

Z(x) �� Y(x�, z) � W
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4.5.5 Indirect Effects

Remarkably, the definition of the natural direct effect (4.11) can easily be turned around
and provide an operational definition for the indirect effect – a concept shrouded in
mystery and controversy, because it is impossible, using the do(x) operator, to disable
the direct link from X to Y so as to let X influence Y solely via indirect paths.

The natural indirect effect, IE, of the transition from x to x� is defined as the expected
change in Y affected by holding X constant, at X � x, and changing Z to whatever value
it would have attained had X been set to X � x�. Formally, this reads (Pearl 2001c):

(4.14)

which is almost identical to the direct effect (equation (4.11)) save for exchanging x and x�.
Indeed, it can be shown that, in general, the total effect TE of a transition is equal to

the difference between the direct effect of that transition and the indirect effect of the
reverse transition. Formally,

(4.15)

In linear systems, where reversal of transitions amounts to negating the signs of their
effects, we have the standard additive formula

(4.16)

Since each term above is based on an independent operational definition, this quality
constitutes a formal justification for the additive formula. 

Note that the indirect effect has clear policy-making implications. For example: in a
hiring discrimination environment, a policy maker may be interested in predicting the
gender mix in the work force if gender bias is eliminated and all applicants are treated
equally – say, the same way that males are currently treated. This quantity will be given
by the indirect effect of gender on hiring, mediated by factors such as education and apti-
tude, which may be gender-dependent.

More generally, a policy maker may be interested in the effect of issuing a directive
to a select set of subordinate employees, or in carefully controlling the routing of mes-
sages in a network of interacting agents. Such applications motivate the analysis of path-
specific effects, that is, the effect of X on Y through a selected set of paths (Avin et al.
2005). 

Note that in all these cases, the policy intervention invokes the selection of signals to be
sensed, rather than variables to be fixed. Pearl (2001c) has suggested therefore that signal
sensing is more fundamental to the notion of causation than manipulation; the latter being
but a crude way of stimulating the former in experimental setup. (See Section 11.4.5.) 

It is remarkable that counterfactual quantities like DE and IE that could not be
expressed in terms of do(x) operators, and appear therefore void of empirical content,
can, under certain conditions, be estimated from empirical studies. A general analysis of
those conditions is given in Shpitser and Pearl (2007).

We shall see additional examples of this “marvel of formal analysis” in Chapters 7,
9, and 11. It constitutes an unassailable argument in defense of counterfactual analysis,
as expressed in Pearl (2000) against the stance of Dawid (2000).

TEx, x�(Y ) � DEx, x�(Y) � IEx, x�(Y ).

� DEx, x�(Y ) 
 IEx�, x(Y ).TEx, x�(Y ) � E(Y(x) 
 Y(x�))

IEx, x�(Y ) � E[(Y(x, Z(x�))) 
 E(Y(x))],

132 Actions, Plans, and Direct Effects
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This model is as compact as (5.7)–(5.9) and is covariance equivalent to M with respect
to the observed variables X, Y, Z. Upon setting and model 
will yield the same probabilistic predictions as those of the model of (5.7)–(5.9). Still,
when viewed as data-generating mechanisms, the two models are not equivalent. Each
tells a different story about the processes generating X, Y, and Z, so naturally their pre-
dictions differ concerning the changes that would result from subjecting these processes
to external interventions. 

5.3.3 Causal Effects: The Interventional Interpretation of Structural

Equation Models

The differences between models M and illustrate precisely where the structural read-
ing of simultaneous equation models comes into play, and why even causally shy re-
searchers consider structural parameters more “meaningful” than covariances and other
statistical parameters. Model defined by (5.12)–(5.14), regards X as a direct par-
ticipant in the process that determines the value of Y, whereas model M, defined by
(5.7)–(5.9), views X as an indirect factor whose effect on Y is mediated by Z. This dif-
ference is not manifested in the data itself but rather in the way the data would change in
response to outside interventions. For example, suppose we wish to predict the expecta-
tion of Y after we intervene and fix the value of X to some constant x; this is denoted
E(Y ƒ do(X � x)). After X � x is substituted into (5.13) and (5.14), model yields

(5.15)

(5.16)

model M yields

(5.17)

(5.18)

Upon setting and (as required for covariance equivalence; see
(5.10) and (5.11)), we see clearly that the two models assign different magnitudes to the
(total) causal effect of X on Y: model M predicts that a unit change in x will change
E(Y) by the amount whereas model puts this amount at 

At this point, it is tempting to ask whether we should substitute for u in (5.9)
prior to taking expectations in (5.17). If we permit the substitution of (5.8) into (5.9), as
we did in deriving (5.17), why not permit the substitution of (5.7) into (5.9) as well? Af-
ter all (the argument runs), there is no harm in upholding a mathematical equality,

that the modeler deems valid. This argument is fallacious, however.15 Structural
equations are not meant to be treated as immutable mathematical equalities. Rather, they
are meant to define a state of equilibrium – one that is violated when the equilibrium is
perturbed by outside interventions. In fact, the power of structural equation models is

x 	 e1,
u �

x 	 e1

�� � g.M���,

d � g�� � �, �� � �,

� ��x.

E [Y � do(X � x)] � E [��x � �e2 � gu � e3]

� (���� � d)x;

E[Y � do(X � x)] � E [����x � ��e2 � dx � e3]

M�

M�,

M�

M�d � g,�� � �, �� � �,

5.3 Graphs and Identifiability 157

15 Such arguments have led to Newcomb’s paradox in the so-called evidential decision theory (see
Section 4.1.1).
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that they encode not only the initial equilibrium state but also the information necessary
for determining which equations must be violated in order to account for a new state of
equilibrium. For example, if the intervention consists merely of holding X constant at
x, then the equation which represents the preintervention process determin-
ing X, should be overruled and replaced with the equation X � x. The solution to the
new set of equations then represents the new equilibrium. Thus, the essential character-
istic of structural equations that sets them apart from ordinary mathematical equations is
that the former stand not for one but for many sets of equations, each corresponding to
a subset of equations taken from the original model. Every such subset represents some
hypothetical physical reality that would prevail under a given intervention.

If we take the stand that the value of structural equations lies not in summarizing dis-
tribution functions but in encoding causal information for predicting the effects of policies
(Haavelmo 1943; Marschak 1950; Simon 1953), it is natural to view such predictions as
the proper generalization of structural coefficients. For example, the proper generaliza-
tion of the coefficient in the linear model M would be the answer to the control query,
“What would be the change in the expected value of Y if we were to intervene and change
the value of Z from z to z � 1?”, which is different, of course, from the observational
query, “What would be the difference in the expected value of Y if we were to find Z
at level z � 1 instead of level z?” Observational queries, as we discussed in Chapter 1,
can be answered directly from the joint distribution P(x, y, z), while control queries re-
quire causal information as well. Structural equations encode this causal information in
their syntax by treating the variable on the left-hand side of the equality sign as the effect
and treating those on the right as causes. In Chapter 3 we distinguished between the two
types of queries through the symbol do(.). For example, we wrote

(5.19)

for the controlled expectation and

(5.20)

for the standard conditional or observational expectation. That E(Y ƒ do(x)) does not
equal E(Y ƒ x) can easily be seen in the model of (5.7)–(5.9), where 

but Indeed, the passive observation X � x should
not violate any of the equations, and this is the justification for substituting both (5.7) and
(5.8) into (5.9) before taking the expectation. 

In linear models, the answers to questions of direct control are encoded in the path
(or structural) coefficients, which can be used to derive the total effect of any variable on
another. For example, the value of E(Y ƒ do(x)) in the model defined by (5.7)–(5.9) is

that is, x times the product of the path coefficients along the path 
Computation of E(Y ƒ do(x)) would be more complicated in the nonparametric case,
even if we knew the functions f1, f2, and f3. Nevertheless, this computation is well
defined; it requires the solution (for the expectation of Y) of a modified set of equations
in which f1 is “wiped out” and X is replaced by the constant x:

(5.21)

(5.22)y � f3(z, u, e3).

z � f2(x, e2),

X S  Z S  Y.��x,

E(Y � x) � rYX x � (�� � y) x.��x
E(Y � do(x)) �

E(Y � x) � E(Y � X � x)

E(Y � do(x)) � E [Y � do(X � x)]

�

x � u � e1,

158 Causality and Structural Models in Social Science and Economics
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neither ensures unbiased effect estimates nor follows from the requirement of unbiased-
ness. After demonstrating, by examples, the absence of logical connections between the
statistical and the causal notions of confounding, we will define a stronger notion of un-
biasedness, called “stable” unbiasedness, relative to which a modified statistical criterion
will be shown necessary and sufficient. The necessary part will then yield a practical
test for stable unbiasedness that, remarkably, does not require knowledge of all potential
confounders in a problem. Finally, we will argue that the prevailing practice of sub-
stituting statistical criteria for the effect-based definition of confounding is not entirely
misguided, because stable unbiasedness is in fact (i) what investigators have been (and
perhaps should be) aiming to achieve and (ii) what statistical criteria can test.

6.2.2 Causal and Associational Definitions

In order to facilitate the discussion, we shall first cast the causal and statistical definitions
of no-confounding in mathematical forms.11

Definition 6.2.1 (No-Confounding; Causal Definition)

Let M be a causal model of the data-generating process – that is, a formal description
of how the value of each observed variable is determined. Denote by P (y ƒ do (x)) the
probability of the response event Y � y under the hypothetical intervention X � x, cal-
culated according to M. We say that X and Y are not confounded in M if and only if

(6.10)

for all x and y in their respective domains, where P(y ƒ x) is the conditional probability
generated by M. If (6.10) holds, we say that P (y ƒ x) is unbiased.

For the purpose of our discussion here, we take this causal definition as the meaning of
the expression “no confounding.” The probability P (y ƒ do (x)) was defined in Chapter 3
(Definition 3.2.1, also abbreviated it may be interpreted as the conditional proba-
bility P* (Y � y ƒ X � x) corresponding to a controlled experiment in which X is ran-
domized. We recall that this probability can be calculated from a causal model M either
directly, by simulating the intervention do (X � x), or (if via the adjustment
formula (equation (3.19))

where S stands for any set of variables, observed as well as unobserved, that satisfy the
back-door criterion (Definition 3.3.1). Equivalently, P (y ƒ do (x)) can be written
P (Y (x) � y), where Y (x) is the potential-outcome variable as defined in (3.51) or in

P(y � do(x)) � a
s

P(y � x, s) P(s),

P (x, s) � 0)

P(y � x̂));

P (y � do (x)) � P (y � x)

184 Simpson’s Paradox, Confounding, and Collapsibility

11 For simplicity, we will limit our discussion to unadjusted confounding; extensions involving mea-
surement of auxiliary variables are straightforward and can be obtained from Section 3.3. We also
use the abbreviated expression “X and Y are not confounded,” though “the effect of X on Y is not
confounded” is more exact.
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“the concept of exogeneity rapidly evolved into a loose notion as a property of an observ-
able variable being uncorrelated with an unobserved error,” and Imbens (1997) readily
agreed that this notion “is inadequate.”26

These critics are hardly justified if we consider the precision and clarity with which
structural errors can be defined when using the proper notation (e.g., (5.25)). When ap-
plied to structural errors, the standard error-based criterion of exogeneity coincides for-
mally with that of (5.30), as can be verified using the back-door test of Theorem 5.3.2
(with Consequently, the standard definition conveys the same information as
that embodied in more complicated and less communicable definitions of exogeneity. I
am therefore convinced that the standard definition will eventually regain the acceptance
and respectability that it has always deserved. 

Relationships between graphical and counterfactual definitions of exogeneity and in-
strumental variables will be discussed in Chapter 7 (Section 7.4.5).

5.5 CONCLUSION

Today the enterprise known as structural equation modeling is increasingly under fire. The
founding fathers have retired, their teachings are forgotten, and practitioners, teachers,
and researchers currently find the methodology they inherited difficult to either defend or
supplant. Modern SEM textbooks are preoccupied with parameter estimation and rarely
explicate the role that those parameters play in causal explanations or in policy analysis;
examples dealing with the effects of interventions are conspicuously absent, for instance.
Research in SEM now focuses almost exclusively on model fitting, while issues pertain-
ing to the meaning and usage of SEM’s models are subjects of confusion and controversy.
Some of these confusions are reflected in the many questions that I have received from
readers (Section 11.5), to whom I dedicated an “SEM Survival Kit” (Section 11.5.3) – a
set of arguments for defending the causal reading of SEM and its scientific rationale.

I am thoroughly convinced that the contemporary crisis in SEM originates in the lack
of a mathematical language for handling the causal information embedded in structural
equations. Graphical models have provided such a language. They have thus helped us
answer many of the unsettled questions that drive the current crisis:

1. Under what conditions can we give causal interpretation to structural coefficients?

2. What are the causal assumptions underlying a given structural equation model?

3. What are the statistical implications of any given structural equation model?

4. What is the operational meaning of a given structural coefficient?

5. What are the policy-making claims of any given structural equation model?

6. When is an equation not structural?

Z � 0).

170 Causality and Structural Models in Social Science and Economics

26 Imbens prefers definitions in terms of experimental metaphors such as “random assignment as-
sumption,” fearing, perhaps, that “[t]ypically the researcher does not have a firm idea what these
disturbances really represent” (Angrist et al. 1996, p. 446). I disagree; “random assignment” is a
misleading metaphor, while “omitted factors” shines in clarity.
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any sentence of the form where A and B are Boolean expressions rep-
resenting events. A causal model, naturally, should encode the truth values of sentences
that deal with causal relationships; these include action sentences (e.g., “A will be true
if we do B”), counterfactuals (e.g., “A would have been different were it not for B”),
and plain causal utterances (e.g., “A may cause B” or “B occurred because of A”). Such
sentences cannot be interpreted in standard propositional logic or probability calculus be-
cause they deal with changes that occur in the external world rather than with changes in
our beliefs about a static world. Causal models encode and distinguish information about
external changes through an explicit representation of the mechanisms that are altered in
such changes.

Definition 7.1.1 (Causal Model)

A causal model is a triple

where:

(i) U is a set of background variables, (also called exogenous),2 that are deter-
mined by factors outside the model;

(ii) V is a set {V1, V2,…, Vn6 of variables, called endogenous, that are determined
by variables in the model – that is, variables in and

(iii) F is a set of functions 5 f1, f2,…, fn6 such that each fi is a mapping from (the
respective domains of) to Vi, where and and the
entire set F forms a mapping from U to V. In other words, each fi in

assigns a value to Vi that depends on (the values of) a select set of variables in
and the entire set F has a unique solution V (u).3,4

Every causal model M can be associated with a directed graph, G(M), in which each
node corresponds to a variable and the directed edges point from members of PAi and
Ui toward Vi. We call such a graph the causal diagram associated with M. This graph
merely identifies the endogenous and background variables that have direct influence on
each Vi; it does not specify the functional form of fi. The convention of confining the
parent set PAi to variables in V stems from the fact that the background variables are of-
ten unobservable. In general, however, we can extend the parent sets to include observed
variables in U.

V � U,

vi � fi (pai, ui),  i � 1, p , n,

PAi � V \ViUi � UUi � PAi

U � V;

M � �U, V, F�,

P(A � B) � p,

7.1 Structural Model Semantics 203

2 We will try to refrain from using the term “exogenous” in referring to background conditions, be-
cause this term has acquired more refined technical connotations (see Sections 5.4.3 and 7.4). The
term “predetermined” is used in the econometric literature.

3 The choice of PAi (connoting parents) is not arbitrary, but expresses the modeller’s understanding
of which variables Nature must consult before deciding the value of Vi. 

4 Uniqueness is ensured in recursive (i.e., acyclic) systems. Halpern (1998) allows multiple solu-
tions in nonrecursive systems.
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Property 5 (Uniqueness)

For every variable X and set of variables Y,

(7.23)

Definition 7.3.4 (Recursiveness)

Let X and Y be singleton variables in a model, and let stand for the inequal-
ity for some values of x, w, and u. A model M is recursive if, for any
sequence we have

(7.24)

Clearly, any model M for which the causal diagram G(M) is acyclic must be recursive.

Theorem 7.3.5 (Recursive Completeness)

Composition, effectiveness, and recursiveness are complete (Galles and Pearl 1998;
Halpern 1998).15

Theorem 7.3.6 (Completeness)

Composition, effectiveness, and reversibility are complete for all causal models (Halpern
1998).

The practical importance of soundness and completeness surfaces when we attempt to
test whether a certain set of conditions is sufficient for the identifiability of some coun-
terfactual quantity Q. Soundness, in this context, guarantees that if we symbolically
manipulate Q using the three axioms and manage to reduce it to an expression that in-
volves ordinary probabilities (free of counterfactual terms), then Q is identifiable (in the
sense of Definition 3.2.3). Completeness guarantees the converse: if we do not succeed
in reducing Q to a probabilistic expression, then Q is nonidentifiable – our three axioms
are as powerful as can be.

The next section demonstrates a proof of identifiability that uses effectiveness and
decomposition as inference rules.

7.3.2 Causal Effects from Counterfactual Logic: An Example

We revisit the smoking–cancer example analyzed in Section 3.4.3. The model associated
with this example is assumed to have the following structure (see Figure 7.5):

V � 5X (smoking), Y (lung cancer), Z (tar in lungs)6,
U � 5U1, U26, U1�� U2,

X1 S X2, X2 S X3, p , Xk�1 S Xk 1 Xk  
S  X1.

X1, X2, p , Xk,
Yxw(u) � Yw(u)

X S Y

Xy(u) � x & Xy(u) � x� 1 x � x�.

7.3 Axiomatic Characterization 231

15 Galles and Pearl (1997) proved recursive completeness assuming that, for any two variables, one
knows which of the two (if any) is an ancestor of the other. Halpern (1998) proved recursive com-
pleteness without this assumption, provided only that (7.24) is known to hold for any two variables
in the model. Halpern further provided a set of axioms for cases where the solution of Yx(u) is not
unique or does not exist.
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Task 3

Compute P(Yx � y) (i.e., the causal effect of smoking on cancer).
For any variable Z, by composition we have

Since (from (7.29)),

where zx � Zx(u). (7.35)

Thus,
P(Yx � y) � P(Yzx � y) from (7.35)

by composition

from (7.30) (7.36)

The probabilities P(Yz � y) and P(Zx � z) were computed in (7.34) and (7.31), respec-
tively. Substituting gives us 

(7.37)

The right-hand side of (7.37) can be computed from P(x, y, z) and coincides with the
front-door formula derived in Section 3.4.3 (equation (3.42)).

Thus, P(Yx � y) can be reduced to expressions involving probabilities of observed vari-
ables and is therefore identifiable. More generally, our completeness result (Theorem
7.3.5) implies that any identifiable counterfactual quantity can be reduced to the cor-
rect expression by repeated application of composition and effectiveness (assuming
recursiveness).

7.3.3 Axioms of Causal Relevance 

In Section 1.2 we presented a set of axioms for a class of relations called graphoids
(Pearl and Paz 1987; Geiger et al. 1990) that characterize informational relevance.16 We
now develop a parallel set of axioms for causal relevance, that is, the tendency of cer-
tain events to affect the occurrence of other events in the physical world, independent of
the observer–reasoner. Informational relevance is concerned with questions of the form:
“Given that we know Z, would gaining information about X give us new information

P(Yx � y) � a
z

P(z � x)a
x�

P(y � z, x�) P(x�).

� a
z

P(Yz � y) P(Zx � z).

� a
z

P(Yz � y � Zx � z) P(Zx � z)

� a
z

P(Yzx � y � Zx � z) P(Zx � z)

YX(u) � Yxzx
(u) � Yz (u),

Yxz (u) � Yz(u)

Yx(u) � Yxz (u)   if  Zx(u) � z.

234 The Logic of Structure-Based Counterfactuals

16 “Relevance” will be used primarily as a generic name for the relationship of being relevant or ir-
relevant. It will be clear from the context when “relevance” is intended to negate “irrelevance.”
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seen that the meaning of the error term uY in the equation Y � fY(paY, uY) is captured
by the counterfactual variable . In other words, the variable UY can be interpreted
as a modifier of the functional mapping from PAY to Y. The statistics of such modifica-
tions is observable when paY is held fixed. This translation into counterfactual notation
may facilitate algebraic manipulations of UY without committing to the functional form
of fY. However, from the viewpoint of model specification, the error terms should still
be viewed as (summaries of) omitted factors. 

Armed with this interpretation, we can obtain graphical and counterfactual definitions
of causal concepts that were originally given error-based definitions. Examples of such
concepts are causal influence, exogeneity, and instrumental variables (Section 5.4.3).
In clarifying the relationships among error-based, counterfactual, and graphical defini-
tions of these concepts, we should first note that these three modes of description can be
organized in a simple hierarchy. Since graph separation implies independence, but inde-
pendence does not imply graph separation (Theorem 1.2.4), definitions based on graph
separation should imply those based on error-term independence. Likewise, since for
any two variables X and Y the independence relation implies the counterfac-
tual independence (but not the other way around), it follows that defini-
tions based on error independence should imply those based on counterfactual inde-
pendence. Overall, we have the following hierarchy:

The concept of exogeneity may serve to illustrate this hierarchy. The pragmatic defini-
tion of exogeneity is best formulated in counterfactual or interventional terms as follows.

Exogeneity (Counterfactual Criterion)

A variable X is exogenous relative to Y if and only if the effect of X on Y is identical to
the conditional probability of Y given X – that is, if

(7.45)

or, equivalently,

(7.46)

this in turn is equivalent to the independence condition named “weak ignora-
bility” in Rosenbaum and Rubin (1983).26

This definition is pragmatic in that it highlights the reasons economists should be con-
cerned with exogeneity by explicating the policy-analytic benefits of discovering that a
variable is exogenous. However, this definition fails to guide an investigator toward

Yx ��  X,

P(Y � y � do (x)) � P(y � x);

P(Yx � y) � P(y � x)

graphical criteria 1  error-based criteria 1  counterfactual criteria.

XpaX �� YpaY

UX  �� Uy

YpaY

246 The Logic of Structure-Based Counterfactuals

26 We focus the discussion in this section on the causal component of exogeneity, which the economet-
ric literature has unfortunately renamed “superexogeneity” (see Section 5.4.3). Epidemiologists
refer to (7.46) as “no-confounding” (see (6.10)). We also postpone discussion of “strong ignora-
bility,” defined as the joint independence to Chapter 9 (Definition 9.2.3).5Yx, Yx�6 �� X,
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verifying, from substantive knowledge of the domain, whether this independence condi-
tion holds in any given system, especially when many equations are involved (see Section
11.3.2). To facilitate such judgments, economists (e.g., Koopmans 1950; Orcutt 1952)
have adopted the error-based criterion of Definition 5.4.6.

Exogeneity (Error-Based Criterion)

A variable X is exogenous in M relative to Y if X is independent of all error terms that
have an influence on Y that is not mediated by X.27

This definition is more transparent to human judgment because the reference to error
terms tends to focus attention on specific factors, potentially affecting Y, with which sci-
entists are familiar. Still, to judge whether such factors are statistically independent is a
difficult mental task unless the independencies considered are dictated by topological
considerations that assure their stability. Indeed, the most popular conception of exo-
geneity is encapsulated in the notion of “common cause”; this may be stated formally as
follows. 

Exogeneity (Graphical Criterion)

A variable X is exogenous relative to Y if X and Y have no common ancestor in G(M)
or, equivalently, if all back-door paths between X and Y are blocked (by colliding
arrows).28

It is easy to show that the graphical condition implies the error-based condition, which in
turn implies the counterfactual (or pragmatic) condition of (7.46). The converse implica-
tions do not hold. For example, Figure 6.4 illustrates a case where the graphical criterion
fails and both the error-based and counterfactual criteria classify X as exogenous. We
argued in Section 6.4 that this type of exogeneity (there called “no confounding”) is
unstable or incidental, and we have raised the question of whether such cases were meant
to be embraced by the definition. If we exclude unstable cases from consideration, then
our three-level hierarchy collapses and all three definitions coincide.

Instrumental Variables: Three Definitions

A three-level hierarchy similarly characterizes the notion of instrumental variables (Bow-
den and Turkington 1984; Pearl 1995c; Angrist et al. 1996), illustrated in Figure 5.9. The
traditional definition qualifies a variable Z as instrumental (relative to the pair (X, Y)) if
(i) Z is independent of all variables (including error terms) that have an influence on Y
that is not mediated by X and (ii) Z is not independent of X.

7.4 Structural and Similarity-Based Counterfactuals 247

27 Independence relative to all errors is sometimes required in the literature (e.g., Dhrymes 1970,
p. 169), but this is obviously too strong. 

28 As in Chapter 6 (note 19), the expression “common ancestors” should exclude nodes that have no
other connection to Y except through X and should include latent nodes for every pair of depend-
ent errors. Generalization to conditional exogeneity relative to observed covariates is straightfor-
ward in all three definitions.
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Consider the structural equation that connects two binary variables, Y and X, in a
causal model:

For any given u, the relationship between X and Y must be one of four functions:

(8.5)

As u varies along its domain, regardless of how complex the variation, the only effect it
can have on the model is to switch the relationship between X and Y among these four
functions. This partitions the domain of U into four equivalence classes, as shown in Fig-
ure 8.2, where each class contains those points u that correspond to the same function. We
can thus replace U by a four-state variable, R(u), such that each state represents one of
the four functions. The probability P(u) would automatically translate into a probability
function P(r), r � 0, 1, 2, 3, that is given by the total weight assigned to the equivalence
class corresponding to r. A state-minimal variable like R is called a “response” vari-
able by Balke and Pearl (1994a,b) and a “mapping” variable by Heckerman and Shachter
(1995), yet “canonical partition” would be more descriptive.3

Because Z, X, and Y are all binary variables, the state space of U divides into 16
equivalence classes: each class dictates two functional mappings, one from Z to X and
the other from X to Y. To describe these equivalence classes, it is convenient to regard
each of them as a point in the joint space of two four-valued variables Rx and Ry. The
variable Rx determines the compliance behavior of a subject through the mapping.

f2 : y � x,  f3 : y � 1.

f0 : y � 0,  f1 : y � x,

y � f (x, u).

264 Imperfect Experiments: Bounding Effects and Counterfactuals

Figure 8.2 The canonical partition of U into four equiva-
lence classes, each inducing a distinct functional mapping
from X to Y for any given function y � f (x, u).

3 In an experimental framework, this partition goes back to Greenland and Robins (1986) and was
dubbed “Principal Stratification” by Frangakis and Rubin (2002). In this framework (see Sec-
tion 7.4.4), u stands for an experimental unit and R(u) corresponds to the potential response of unit u
to treatment x. The assumption that each unit (e.g., an individual subject) possesses an intrinsic,
seemingly “fatalistic’’ response function has met with some objections (Dawid 2000), owing to the
inherent unobservability of the many factors that might govern an individual response to treatment.
The equivalence-class formulation of R(u) mitigates those objections (Pearl 2000) by showing that
R(u) evolves naturally and mathematically from any complex system of stochastic latent variables,
provided only that we acknowledge their existence through the equation y � f (x, u). Those who
invoke quantum-mechanical objections to the latter step as well (e.g., Salmon 1998) should regard
the functional relationship y � f (x, u) as an abstract mathematical construct, representing the
extreme points (vertices) of the set of conditional probabilities satisfying the constraints
of (8.1) and (8.2).

P(y � x, u)
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Applying (8.6) and (8.7), we can write the linear transformation from a point in Q to a
point in P:

which can also be written in matrix form as 
Given a point in P-space, the strict lower bound on can be deter-

mined by solving the following linear programming problem.

subject to:

(8.13)

For problems of this size, procedures are available for deriving symbolic expressions
for the solution of this optimization exercise (Balke 1995), leading to the following lower
bound on the treatment effect:

(8.14a)

Similarly, the upper bound is given by

(8.14b)ACE(X S  Y) ! min h 1 " p01.1 " p10.0
1 " p01.0 " p10.1

"p01.0 # p01.1 # p00.1 # p11.0 # p00.0
"p01.1 # p11.1 # p00.1 # p01.0 # p00.0

p11.1 # p00.1
p11.0 " p00.0

"p10.1 # p11.1 # p00.1 # p11.0 # p10.0
"p10.0 # p11.0 # p00.0 # p11.1 # p10.1

x.

ACE(X S  Y) $ max h p11.1 # p00.0 " 1
p11.0 # p00.1 " 1

p11.0 " p11.1 " p10.1 " p01.0 " p10.0
p11.1 " p11.0 " p10.0 " p01.1 " p10.1

"p01.1 " p10.1
"p01.0 " p10.0

p00.1 " p01.1 " p10.1 " p01.0 " p00.0

 p00.0 " p01.0 " p10.0 " p01.1 " p00.1 

x.

qjk $ 0  for  j, k H 50, 1, 2, 36.R qS % pS,

a
3

j%0
a
3

k%0
qjk % 1,

Minimize  q01 # q11 # q21 # q31 " q02 " q12 " q22 " q32

ACE(X S Y)pS
pS % R qS.

p11.0 % q21 # q23 # q31 # q33,  p11.1 % q11 # q13 # q31 # q33,

p10.0 % q02 # q03 # q12 # q13,  p10.1 % q02 # q03 # q22 # q23,

p01.0 % q20 # q22 # q30 # q32,  p01.1 % q10 # q12 # q30 # q32,

p00.0 % q00 # q01 # q10 # q11,  p00.1 % q00 # q01 # q20 # q21,

pS
qS
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+ (replace minus with plus)
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We may also derive bounds for (8.8) and (8.9) individually (under the same linear
constraints), giving:

(8.15)

(8.16)

These expressions give the tightest possible assumption-free4 bounds on the quantities
sought.

8.2.4 The Natural Bounds

The expression for (equation (8.4)) can be bounded by two simple for-
mulas, each made up of the first two terms in (8.14a) and (8.14b) (Robins 1989; Manski
1990; Pearl 1994a):

(8.17)

Because of their simplicity and wide range of applicability, the bounds given by (8.17)
were named the natural bounds (Balke and Pearl 1997). The natural bounds guarantee
that the causal effect of the actual treatment cannot be smaller than that of the encour-
agement (P(y1 ƒ z1) � P(y1 ƒ z0)) by more than the sum of two measurable quantities,
P(y1, x0 ƒ z1) � P(y0, x1 ƒ z0); they also guarantee that the causal effect of the treatment
cannot exceed that of the encouragement by more than the sum of two other measurable

ACE(X S  Y) � P(y1 � z1) � P(y1 � z0) � P(y0, x0 � z1) � P(y1, x1 � z0).

ACE(X S  Y) � P(y1 � z1) � P(y1 � z0) � P(y1, x0 � z1) � P(y0, x1 � z0),

ACE(X S  Y)

P( y1 � do(x1)) � min μ
1 � p01.0

1 � p01.0

p00.0 � p11.0 � p10.1 � p11.1

p10.0 � p11.0 � p00.1 � p11.1

∂ .

P( y1 � do(x1)) � max μ
p11.0

p11.1

�p00.0 � p01.0 � p00.1 � p11.1

�p01.0 � p10.0 � p10.1 � p11.1

∂ ,

P( y1 � do(x0)) � min μ
p01.0 � p10.0 � p10.1 � p11.1

1 � p00.1

1 � p00.0

p10.0 � p11.0 � p01.1 � p10.1

∂ ,

P( y1 � do(x0)) � max μ
p10.0 � p11.0 � p00.1 � p11.1

p10.1

p10.0

p01.0 � p10.0 � p00.1 � p01.1

∂ ,

268 Imperfect Experiments: Bounding Effects and Counterfactuals

4 “Assumption-transparent” might be a better term; we make no assumptions about factors that de-
termine subjects’ compliance, but we rely on the assumptions of (i) randomized assignment and
(ii) no side effects, as displayed in the graph (e.g., Figure 8.1).
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quantities, P(y0, x0 ƒ Z1) ! P(y1, x1 ƒ z0). The width of the natural bounds, not surpris-
ingly, is given by the rate of noncompliance: P(x1 ƒ z0) ! P(x0 ƒ z1).

The width of the sharp bounds in (8.14ab) can be substantially narrower, though. In
Balke (1995) and Pearl (1995b), it is shown that –  even under conditions of 50% non-
compliance – these bounds may collapse to a point and thus permit consistent estimation
of . This occurs whenever (a) the percentage of subjects complying with
assignment z0 is the same as those complying with z1 and (b) Y and Z are perfectly cor-
related in at least one treatment arm x (see Table 8.1 in Section 8.5).

Although more complicated than the natural bounds of (8.17), the sharp bounds of
(8.14ab) are nevertheless easy to assess once we have the frequency data in the eight cells
of P(y, x ƒ z). It can also be shown (Balke 1995) that the natural bounds are optimal 
when we can safely assume that no subject is contrarian – in other words, that no subject
would consistently choose a treatment arm contrary to the one assigned.

Note that, if the response Y is continuous, then one can associate y1 and y0 with the
binary events and (respectively) and let t vary continuously over the range
of Y. Equations (8.15) and (8.16) would then provide bounds on the entire distribution of
the treatment effect 

8.2.5 Effect of Treatment on the Treated (ETT)
Much of the literature assumes that is the parameter of interest, because

predicts the impact of applying the treatment uniformly (or randomly)
over the population. However, if a policy maker is not interested in introducing new
treatment policies but rather in deciding whether to maintain or terminate an existing pro-
gram under its current incentive system, then the parameter of interest should measure
the impact of the treatment on the treated, namely, the mean response of the treated sub-
jects compared to the mean response of these same subjects had they not been treated
(Heckman 1992). The appropriate formula for this parameter is

(8.18)

which is similar to (8.4) except for replacing the expectation over u with the conditional
expectation given X " x1.

The analysis of reveals that, under conditions of no intrusion (i.e.,
as in most clinical trials), can be identified precisely

(Bloom 1984; Heckman and Robb 1986; Angrist and Imbens 1991). The natural bounds
governing in the general case can be obtained by similar means (Pearl
1995b), which yield

(8.19)

ETT(X S Y ) #
P(y1 ! z1) $ P(y1 ! z0)

P(x1)>P(z1)
!

P(y1, x1 ! z0)

P(x1)
.

ETT(X S Y ) %
P(y1 ! z1) $ P(y1 ! z0)

P(x1)>P(z1)
$

P(y0, x1 ! z0)

P(x1)
,

ETT(X S Y )

ETT(X S Y )P(x1 ! z0) " 0,
ETT(X S Y )

" a
u

[P(y1 ! x1, u) $ P(y1 ! x0, u)] P(u ! x1),

ETT(X S Y ) " P(Yx1
" y1 ! x1) $ P(Yx0

" y1 ! x1)

ACE(X S  Y )
ACE(X S  Y )

P(Y & t ! do(x)).

Y # tY ' t

ACE(X S  Y)
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a mean difference (using P(z1) � 0.50) of

and an encouragement effect (intent to treat) of

According to (8.17), can be bounded by

These are remarkably informative bounds: although 38.8% of the subjects deviated
from their treatment protocol, the experimenter can categorically state that, when applied
uniformly to the population, the treatment is guaranteed to increase by at least 39.2% the
probability of reducing the level of cholesterol by 28 points or more.

The impact of treatment “on the treated” is equally revealing. Using equation (8.20),
can be evaluated precisely (since P(x1 ƒ z0) � 0):

In words, those subjects who stayed in the program are much better off than they would
have been if not treated: the treatment can be credited with reducing cholesterol levels
by at least 28 units in 76.2% of these subjects.

8.3 COUNTERFACTUALS AND LEGAL RESPONSIBILITY

Evaluation of counterfactual probabilities could be enlightening in some legal cases in
which a plaintiff claims that a defendant’s actions were responsible for the plaintiff’s mis-
fortune. Improper rulings can easily be issued without an adequate treatment of counter-
factuals (Robins and Greenland 1989). Consider the following hypothetical and fictitious
case study, specially crafted in Balke and Pearl (1994a) to accentuate the disparity
between causal effects and causal attribution.

The marketer of PeptAid (antacid medication) randomly mailed out product samples
to 10% of the households in the city of Stress, California. In a follow-up study, researchers
determined for each individual whether they received the PeptAid sample, whether they
consumed PeptAid, and whether they developed peptic ulcers in the following month.

The causal structure for this scenario is identical to the partial compliance model
given by Figure 8.1, where z1 asserts that PeptAid was received from the marketer, x1
asserts that PeptAid was consumed, and y1 asserts that peptic ulceration occurred. The
data showed the following distribution:

ETT(X S Y ) �
0.465

0.610
� 0.762.

ETT(X S Y )

ETT(X S  Y ) � 0.465 � 0.315 � 0.000 � 0.780.

ETT(X S  Y ) � 0.465 � 0.073 � 0.000 � 0.392,

ACE(X S  Y )

P(y1 � z1) � P(y1 � z0) � 0.073 � 0.473 � 0.081 � 0.465.

P(y1 � x1) � p(y1 � x0) �
0.473

0.473 � 0.139
�

0.073 � 0.081

1 � 0.315 � 0.073
� 0.662,
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These data indicate a high correlation between those who consumed PeptAid and those
who developed peptic ulcers:

In addition, the intent-to-treat analysis showed that those individuals who received the
PeptAid samples had a 45% greater chance of developing peptic ulcers:

The plaintiff (Mr. Smith), having heard of the study, litigated against both the market-
ing firm and the PeptAid producer. The plaintiff’s attorney argued against the producer,
claiming that the consumption of PeptAid triggered his client’s ulcer and resulting med-
ical expenses. Likewise, the plaintiff’s attorney argued against the marketer, claiming
that his client would not have developed an ulcer if the marketer had not distributed the
product samples.

The defense attorney, representing both the manufacturer and marketer of PeptAid,
rebutted this argument, stating that the high correlation between PeptAid consumption
and ulcers was attributable to a common factor, namely, pre-ulcer discomfort. Individu-
als with gastrointestinal discomfort would be much more likely both to use PeptAid and
to develop stomach ulcers. To bolster his clients’ claims, the defense attorney introduced
expert analysis of the data showing that, on average, consumption of PeptAid actually
decreases an individual’s chances of developing ulcers by at least 15%.

Indeed, the application of (8.14a,b) results in the following bounds on the average
causal effect of PeptAid consumption on peptic ulceration:

this proves that PeptAid is beneficial to the population as a whole.
The plaintiff’s attorney, though, stressed the distinction between the average treatment

effects for the entire population and for the subpopulation consisting of those individu-
als who, like his client, received the PeptAid sample, consumed it, and then developed
ulcers. Analysis of the population data indicated that, had PeptAid not been distributed,
Mr. Smith would have had at most a 7% chance of developing ulcers – regardless of any
confounding factors such as pre-ulcer pain. Likewise, if Mr. Smith had not consumed
PeptAid, he would have had at most a 7% chance of developing ulcers.

The damaging statistics against the marketer are obtained by evaluating the bounds on
the counterfactual probability that the plaintiff would have developed a peptic ulcer if he
had not received the PeptAid sample, given that he in fact received the sample PeptAid,
consumed the PeptAid, and developed peptic ulcers. This probability may be written in
terms of the parameters q13, q31, and q33 as

!0.23 " ETT(X S  Y) " !0.15;

P(y1 ! z1) # 0.81,  P(y1 ! z0) # 0.36.

P(y1 ! x1) # 0.50,  P(y1 ! x0) # 0.26.

P(y1, x1 ! z0) # 0.32,      P(y1, x1 ! z1) # 0.14.

P(y1, x0 ! z0) # 0.04,      P(y1, x0 ! z1) # 0.67,

P(y0, x1 ! z0) # 0.32,      P(y0, x1 ! z1) # 0.17,

P(y0, x0 ! z0) # 0.32,      P(y0, x0 ! z1) # 0.02,
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matching our intuition that a shot fired by an expert marksman would be sufficient for
causing the death of T, regardless of the court decision.

Note that Theorems 9.2.10 and 9.2.11 are not applicable to this example because x is
not exogenous; events x and y have a common cause (the captain’s signal), which ren-
ders . However, the monotonicity of Y (in x) permits us
to compute PNS, PS, and PN from the joint distribution P(x, y) and the causal effects
(using (9.28)–(9.30)), instead of consulting the functional model. Indeed, writing

(9.40)

and

(9.41)

we obtain

(9.42)

and

(9.43)

as expected.

9.3.3 Example 3: The Effect of Radiation on Leukemia

Consider the following data (Table 9.1, adapted10 from Finkelstein and Levin 1990)
comparing leukemia deaths in children in southern Utah with high and low exposure to
radiation from the fallout of nuclear tests in Nevada. Given these data, we wish to esti-
mate the probabilities that high exposure to radiation was a necessary (or sufficient, or
both) cause of death due to leukemia.

PS �
P(yx) � P(y)

P(x�, y�)
�

1� 1
2

1
2

� 1,

PN �
P(y) � P(yx�)

P(x, y)
�

1
2 � 1

2
1
2

� 0

P(x, y�) � P(x�, y) � 0,

P(x, y) � P(x�, y�) � 1
2

P(y � x�) � 0 	 P(yx�) � 1
2

9.3 Examples and Applications 299

Table 9.1

Exposure

High (x) Low 

Deaths (y) 30 16
Survivals 69,130 59,010(y�)

(x�)

10 The data in Finkelstein and Levin (1990) are given in “person-year” units. For the purpose of il-
lustration we have converted the data to absolute numbers (of deaths and nondeaths) assuming a
ten-year observation period.

Errata for J. Pearl, Causality: Models, Reasoning, and Inference (2nd edition). 
Changes marked in red were updated 7/17/13 for August 2013 printing. 
Changes marked in green are planned for the 2014 printing.

kaoru
Text Box
Was Radiation the Cause of Leukemia?

kaoru
Polygonal Line

kaoru
Polygonal Line

kaoru
Pencil

kaoru
Pencil



can be ascertained: exogeneity (i.e., no confounding) and monotonicity (i.e., no preven-
tion). When monotonicity does not hold, ERR provides merely a lower bound for PN, as
shown in (9.13). (The upper bound is usually unity.) The nonentries (—) in the right-hand
side of Table 9.3 represent vacuous bounds (i.e., In the presence of con-
founding, ERR must be corrected by the additive term 
as stated in (9.31). In other words, when confounding bias (of the causal effect) is pos-
itive, PN is higher than ERR by the amount of this additive term. Clearly, owing to
the division by P(x, y), the PN bias can be many times higher than the causal effect
bias However, confounding results only from association between
exposure and other factors that affect the outcome; one need not be concerned with asso-
ciations between such factors and susceptibility to exposure (see Figure 9.2).

The last row in Table 9.3, corresponding to no assumptions whatsoever, leads to vac-
uous bounds for PN, unless we have combined data. This does not mean, however, that
justifiable assumptions other than monotonicity and exogeneity could not be helpful in
rendering PN identifiable. The use of such assumptions is explored in the next section.

9.4 IDENTIFICATION IN NONMONOTONIC MODELS

In this section we discuss the identification of probabilities of causation without making
the assumption of monotonicity. We will assume that we are given a causal model M in
which all functional relationships are known, but since the background variables U are
not observed, their distribution is not known and the model specification is not complete.

Our first step would be to study under what conditions the function P(u) can be iden-
tified, thus rendering the entire model identifiable. If M is Markovian, then the problem
can be analyzed by considering each parents–child family separately. Consider any ar-
bitrary equation in M,

(9.55)� f (x1, x2, p , xk, u1, p , um),

y � f (paY, uY)

P(y � x�) � P(yx�).

[P(y � x�) � P(yx�)]>P(x, y),
0 � PN � 1).

304 Probability of Causation: Interpretation and Identification

Table 9.3. PN as a Function of Assumptions and Available Data

Assumptions Data Available

Exogeneity Monotonicity Additional Experimental Observational Combined

� � ERR ERR ERR
� � bounds bounds bounds
� � covariate — corrected corrected

control ERR ERR
� � — — corrected

ERR
� � — — bounds

Note: ERR stands for the excess risk ratio, corrected ERR is given in (9.31).1 � P(y � x�)>P(y� � x�);
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Author’s Answer:

The exclusion of descendants from the back-door criterion is indeed based on first prin-
ciples, in terms of the goal of removing bias. The principles are as follows: We wish to
measure a certain quantity (causal effect) and, instead, we measure a dependency P(y ƒƒ x)
that results from all the paths in the diagram; some are spurious (the back-door paths),
and some are genuinely causal (the directed paths from X to Y). Thus, to remove bias,
we need to modify the measured dependency and make it equal to the desired quantity.
To do this systematically, we condition on a set Z of variables while ensuring that:

1. We block all spurious paths from X to Y,

2. We leave all directed paths unperturbed,

3. We create no new spurious paths.

Principles 1 and 2 are accomplished by blocking all back-door paths and only those
paths, as articulated in condition (ii). Principle 3 requires that we do not condition on
descendants of X, even those that do not block directed paths, because such descendants
may create new spurious paths between X and Y. To see why, consider the graph

.

The intermediate variables, S1, S2,…, (as well as Y) are affected by noise factors e0, el,
e2,. . . which are not shown explicitly in the diagram. However, under magnification, the
chain unfolds into the graph in Figure 11.4.

Now imagine that we condition on a descendant Z of S1 as shown in Figure 11.5.
Since S1 is a collider, this creates dependency between X and e1 which is equivalent to a
back-door path

.

By principle 3, such paths should not be created, for it introduces spurious dependence
between X and Y.

Note that a descendant Z of X that is not also a descendant of some Si escapes this
exclusion; it can safely be conditioned on without introducing bias (though it may
decrease the efficiency of the associated estimator of the causal effect of X on Y). Section

X 4  e1 S S1 S S2 S S3 S Y

X S S1 S S2 S S3 S Y

11.3 Estimating Causal Effects 339

e1e0 e4

S2 S3

e3e2

S1X Y

Figure 11.4 Showing the noise factors on the
path from X to Y.

Z

e0 e4e1

S2 S3

e3e2

X S1 Y

Figure 11.5 Conditioning on Z creates
dependence between X and e1, which biases the
estimated effect of X on Y.
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because the graph applicable for this task is given in Figure 11.6; F becomes a
descendant of X, and is excluded by the back-door criterion.

2. If the explanation of confounding and sufficiency sounds at variance with tradi-
tional epidemiology, it is only because traditional epidemiologists did not have
proper means of expressing the operations of blocking or creating dependencies.
They might have had a healthy intuition about dependencies, but graphs trans-
late this intuition into a formal system of closing and opening paths.

We should also note that before 1985, causal analysis in epidemiology was in a
state of confusion, because the healthy intuitions of leading epidemiologists had
to be expressed in the language of associations – an impossible task. Even the
idea that confounding stands for “bias,” namely, a “difference between two
dependencies, one that we wish to measure, the other that we do measure,” was
resisted by many (see Chapter 6), because they could not express the former
mathematically.3

Therefore, instead of finding “something in graph language that is closer to tra-
ditional meaning,” we can do better: explicate what that “traditional meaning”
ought to have been.

In other words, traditional meaning was informal and occasionally misguided,
while graphical criteria are formal and mathematically proven.

Chapter 6 (pp. 183, 194) records a long history of epidemiological intuitions,
some by prominent epidemiologists, that have gone astray when confronted with
questions of confounding and adjustment (see Greenland and Robins 1986;
Wickramaratne and Holford 1987; Weinberg 1993). Although most leading epi-
demiologists today are keenly attuned to modern developments in causal analy-
sis, (e.g., Glymour and Greenland 2008), epidemiological folklore is still per-
meated with traditional intuitions that are highly suspect. (See Section 6.5.2.)

In summary, graphical criteria, as well as principles 1–3 above, give us a sensi-
ble, friendly, and unambiguous interpretation of the “traditional meaning of epi-
demiological concepts.”

11.3.2 Demystifying “Strong Ignorability”

Researchers working within the confines of the potential-outcome language express the
condition of “zero bias” or “no-confounding” using an independence relationship called
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3 Recall that Greenland and Robins (1986) were a lone beacon of truth for many years, and even
they had to resort to the “black-box” language of “exchangeability” to define “bias,” which dis-
couraged intuitive interpretations of confounding (see Section 6.5.3). Indeed, it took epidemiolo-
gists another six years (Weinberg 1993) to discover that adjusting for factors affected by the exposure
(as in Figure 11.5) would introduce bias.

X Y F

C

Figure 11.6 Graph applicable for accessing the effect of X on Y.
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S2 � 5Z2, W26 is admissible (by virtue of satisfying the back-door criterion), hence S1
and S2 are c-equivalent. Yet neither C1 nor C2 holds in this case.

A natural attempt would be to impose the condition that S1 and S2 each be c-equiva-
lent to and invoke the criterion of  Stone (1993)  and Robins (1997) for the
required set-subset equivalence. The resulting criterion, while valid, is still not complete;
there are cases where S1 and S2 are c-equivalent yet not c-equivalent to their union. A
theorem by Pearl and Paz (2008) broadens this condition using irreducible sets.

Having given a conditional-independence characterization of c-equivalence does not
solve, of course, the problem of identifying admissible sets; the latter is a causal notion
and cannot be given statistical characterization. 

The graph depicted in Figure 11.8(b) demonstrates the difficulties commonly faced
by social and health scientists. Suppose our target is to estimate P(y ƒ do(x)) given
measurements on 5X, Y, Z1, Z2, W1, W2, V6, but having no idea of the underlying graph
structure. The conventional wisdom is to start with all available covariates C � 5Z1, Z2,
W1, W2, V6, and test if a proper subset of C would yield an equivalent estimand upon
adjustment. Statistical methods for such reduction are described in Greenland et al.
(1999b), Geng et al. (2002), and Wang et al. (2008). For example, 5Z1, V6, 5Z2, V6, or 
5Z1, Z26 can be removed from C by successively applying conditions C1 and C2. This
reduction method would produce three irreducible subsets, 5Z1, W1, W26, 5Z2, W1, W26,
and 5V, W1, W26, all c-equivalent to the original covariate set C. However, none of these
subsets is admissible for adjustment, because none (including C) satisfies the back-door
criterion. While a theorem due to Tian et al. (1998) assures us that any c-equivalent sub-
set of a set C can be reached from C by a step-at-a-time removal method, going through
a sequence of c-equivalent subsets, the problem of covariate selection is that, lacking the
graph structure, we do not know which (if any) of the many subsets of C is admissible.
The next subsection discusses how external knowledge, as well as more refined analysis
of the data at hand, can be brought to bear on the problem.

11.3.4 Data vs. Knowledge in Covariate Selection

What then can be done in the absence of a causal graph? One way is to postulate a plau-
sible graph, based on one’s understanding of the domain, and check if the data refutes
any of the statistical claims implied by that graph. In our case, the graph of Figure 11.8(b)
advertises several such claims, cast as conditional independence constraints, each asso-
ciated with a missing arrow in the graph:

Satisfying these constraints does not establish, of course, the validity of the causal
model postulated because, as we have seen in Chapter 2, alternative models may exist
which satisfy the same independence constraints yet embody markedly different causal
structures, hence, markedly different admissible sets and effect estimands. A trivial
example would be a complete graph, with arbitrary orientation of arrows which, with a
clever choice of parameters, can emulate any other graph. A less trivial example, one
that is not sensitive to choice of parameters, lies in the class of equivalent structures, in

X �� 5V, Z26 � Z1, W1, W2.X �� Z2 � Z, W1, W2V �� W1

Z1 �� W2 � W1Z1 �� Z2 � V, W1, W2V �� Y � X, Z2, W2

Z2 �� W1 � W2V �� W2V �� X � Z1, W1

S1 � S2
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The difficulty that most investigators experience in comprehending what “ignorability”
means, and what judgment it summons them to exercise, has tempted them to assume
that it is automatically satisfied, or at least is likely to be satisfied, if one includes in the
analysis as many covariates as possible. The prevailing attitude is that adding more covari-
ates can cause no harm (Rosenbaum 2002, p. 76) and can absolve one from thinking about
the causal relationships among those covariates, the treatment, the outcome and, most
importantly, the confounders left unmeasured (Rubin 2009).

This attitude stands contrary to what students of graphical models have learned, and
what this book has attempted to teach. The admissibility of S can be established only by
appealing to the causal knowledge available to the investigator, and that knowledge, as
we know from graph theory and the back-door criterion, makes bias reduction a non-
monotonic operation, i.e., eliminating bias (or imbalance) due to one confounder may
awaken and unleash bias due to dormant, unmeasured confounders. Examples abound
(e.g., Figure 6.3) where adding a variable to the analysis not only is not needed, but
would introduce irreparable bias (Pearl 2009, Shrier 2009, Sjölander 2009).

Another factor inflaming the controversy has been the general belief that the bias-
reducing potential of propensity score methods can be assessed experimentally by running
case studies and comparing effect estimates obtained by propensity scores to those
obtained by controlled randomized experiments (Shadish and Cook 2009).11 This belief
is unjustified because the bias-reducing potential of propensity scores depends critically
on the specific choice of S or, more accurately, on the cause–effect relationships among
variables inside and outside S. Measuring significant bias in one problem instance
(say, an educational program in Oklahoma) does not preclude finding zero bias in
another (say, crime control in Arkansas), even under identical statistical distributions
P(x, s, y).

With these considerations in mind, one is justified in asking a social science type
question: What is it about propensity scores that has inhibited a more general under-
standing of their promise and limitations? 

Richard Berk, in Regression Analysis: A Constructive Critique (Berk 2004), recalls
similar phenomena in social science, where immaculate ideas were misinterpreted by
the scientific community: “I recall a conversation with Don Campbell in which he
openly wished that he had never written Campbell and Stanley (1966). The intent of the
justly famous book, Experimental and Quasi-Experimental Designs for Research, was
to contrast randomized experiments to quasi-experimental approximations and to
strongly discourage the latter. Yet the apparent impact of the book was to legitimize a
host of quasi-experimental designs for a wide variety of applied social science. After I
got to know Dudley Duncan late in his career, he said that he often thought that his
influential book on path analysis, Introduction to Structural Equation Models was a
big mistake. Researchers had come away from the book believing that fundamental pol-
icy questions about social inequality could be quickly and easily answered with path
analysis.” (p. xvii)
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11 Such beliefs are encouraged by valiant statements such as: “For dramatic evidence that such an
analysis can reach the same conclusion as an exactly parallel randomized experiment, see Shadish
and Clark (2006, unpublished)” (Rubin 2007).
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I believe that a similar cultural phenomenon has evolved around propensity scores.
It is not that Rosenbaum and Rubin were careless in stating the conditions for suc-

cess. Formally, they were very clear in warning practitioners that propensity scores work
only under “strong ignorability” conditions. However, what they failed to realize is that
it is not enough to warn people against dangers they cannot recognize; to protect them
from perilous adventures, we must also give them eyeglasses to spot the threats, and a
meaningful language to reason about them. By failing to equip readers with tools (e.g.,
graphs) for recognizing how “strong ignorability” can be violated or achieved, they have
encouraged a generation of researchers (including federal agencies) to assume that
ignorability either holds in most cases, or can be made to hold by clever designs.

11.3.6 The Intuition behind do-Calculus

Question to Author Regarding Theorem 3.4.1:

In the inference rules of do-calculus (p. 85), the subgraph represents the distribution
prevailing under the operation do(X � x), since all direct causes of X are removed. What
distribution does the submodel represent, with the direct effects of X removed?

Author’s Reply:

The graph represents the hypothetical act of “holding constant” all children of X.
This severs all directed paths from X to Y, while leaving all back-door paths intact.
So, if X and Y are d-connected in that graph, it must be due to (unblocked) con-
founding paths between the two. Conversely, if we find a set Z of nodes that d-separate
X from Y in that graph, we are assured that Z blocks all back-door paths in the orig-
inal graph. If we further condition on variables Z, we are assured, by the back-door
criterion, that we have neutralized all confounders and that whatever dependence we
measure after such conditioning must be due to the causal effect of X on Y, free of
confoundings.

11.3.7 The Validity of G-Estimation

In Section 3.6.4 we introduced the G-estimation formula (3.63), together with the coun-
terfactual independency (3.62), which Robins proved to
be a sufficient condition for (3.63). In general, condition (3.62) is both overrestrictive
and lacks intuitive basis. A more general and intuitive condition leading to (3.63) is
derived in (4.5) (p. 122), which reads as follows:

(3.62*) General Condition for g-Estimation (Sequential Deconfounding)

P(y ƒ g � x) is identifiable and is given by (3.63) if every action-avoiding back-door
path from Xk to Y is blocked by some subset Lk of nondescendants of Xk. (By “action-
avoiding” we mean a path containing no arrows entering an X variable later than Xk.)

This condition bears several improvements over (3.62), as demonstrated in the fol-
lowing three examples.

Example 11.3.1 Figure 11.10 demonstrates cases where the g-formula (3.63) is valid
with a subset Lk of the past but not with the entire past. Assuming U1 and U2 are

(Y(x) �� Xk � Lk, Xk�1 � xk�1),

GX

GX

GX,
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unobserved, and temporal order: U1, Z, X1, U2, Y, we see that both (3.62) and (3.62*),
hence (3.63), are satisfied with L1 � 0, while taking the whole past L1 � Z would
violate both.

Example 11.3.2 Figure 11.11 demonstrates cases where defining Lk as the set of
“nondescendants” of Xk (as opposed to temporal predecessors of Xk) broadens (3.62).
Assuming temporal order: U1, X1, S, Y, both (3.62) and (3.62*) are satisfied with 
L1 � S, but not with L1 � 0.

Example 11.3.3 (constructed by Ilya Shpitser in response to Eliezer Yudkowsky)
Figure 11.12 demonstrates cases where (3.62) is not satisfied even with the new inter-
pretation of Lk, but the graphical condition (3.62*) is. It is easy to see that (3.62*) is
satisfied; all back-door action-avoiding paths from X1 to Y are blocked by 5X0, Z6. At
the same time, it is possible to show (using the Twin Network Method, p. 213) that
Y(x0, x1) is not independent of X1, given Z and X0. (In the twin network model there is
a d-connected path from X1 to Y(x0, x1), as follows: Therefore,
(3.62) is not satisfied for Y(x0, x1) and X1.)

This example is another demonstration of the weakness of the potential-outcome lan-
guage initially taken by Robins in deriving (3.63). The counterfactual condition (3.62)
that legitimizes the use of the g-estimation formula is opaque, evoking no intuitive sup-
port. Epidemiologists who apply this formula are doing so under no guidance of sub-
stantive medical knowledge. Fortunately, graphical methods are rapidly making their
way into epidemiological practice (Greenland et al. 1999a; Robins 2001; Hernán et al.
2002; Greenland and Brumback 2002; Kaufman et al. 2005; Petersen et al. 2006;
VanderWeele and Robins 2007) as more and more researchers begin to understand the
assumptions behind g-estimation. With the added understanding that structural equation
models subsume, unify, and underlie the graphical, counterfactual, potential outcome
and sufficient-component (Rothman 1976) approaches to causation,12 epidemiology
stands a good chance of becoming the first discipline to fully liberate itself from past
dogmas and “break through our academically enforced reluctance to think directly about
causes (Weinberg 2007).”

X1 d Z 4 Z* S Y*.
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12 This unification has not been sufficiently emphasized by leading epidemiologists (Greenland and
Brumback 2002), economists (Heckman and Vytlacil 2007), and social scientists (Morgan and
Winship 2007), not to mention statisticians (Cox and Wermuth 2004; Rubin 2005). With all due
respect to multiculturalism, all approaches to causation are variants or abstractions of the struc-
tural theory presented in this book (Chapter 7).

Figure 11.10 Conditioning on the entire past L1 � Z would
invalidate g-estimation.

U1

YX1

Z U2

U1 S

YX1

Figure 11.11 g-estimation is rendered valid by including a 
non-predecessor S.
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11.4 POLICY EVALUATION AND THE do-OPERATOR

11.4.1 Identifying Conditional Plans (Section 4.2, p. 113)

Question to Author:

Section 4.2 of the book (p. 113) gives an identification condition and estimation formula
for the effect of a conditional action, namely, the effect of an action do(X � g(z)) where
Z � z is a measurement taken prior to the action. Is this equation generalizable to the
case of several actions, i.e., conditional plan?

The difficulty seen is that this formula was derived on the assumption that X does
not change the value of Z. However, in a multiaction plan, some actions in X could
change observations Z that guide future actions. We do not have notation for distin-
guishing post-intervention from pre-intervention observations. Absent such notation, it
is not clear how conditional plans can be expressed formally and submitted to the do-
calculus for analysis.

Author’s Reply (with Ilya Shpitser):

A notational distinction between post-intervention pre-intervention observations is intro-
duced in Chapter 7 using the language of counterfactuals. The case of conditional plans,
however, can be handled without resorting to richer notation. The reason is that the obser-
vations that dictate the choice of an action are not changed by that action, while those that
have been changed by previous actions are well captured by the P(y ƒ do(x), z) notation.

To see that this is the case, however, we will first introduce counterfactual notation,
and then show that it can be eliminated from our expression. We will use bold letters to
denote sets, and normal letters to denote individual elements. Also, capital letters will
denote random variables, and small letters will denote possible values these variables
could attain. We will write Yx to mean ‘the value Y attains if we set variables X to val-
ues x.’ Similarly, YXg is taken to mean ‘the value Y attains if we set variables X to what-
ever values they would have attained under the stochastic policy g.’ Note that Yx and YXg
are both random variables, just as the original variable Y.

Say we have a set of K action variables X that occur in some temporal order. We will
indicate the time at which a given variable is acted on by a superscript, so a variable Xi

occurs before Xj if For a given Xi, we denote to be the set of action variables
preceding Xi.

We are interested in the probability distribution of a set of outcome variables Y, under
a policy that sets the values of each to the output of functions gi (known in
advance) which pay attention to some set of prior variables Zi, as well as the previous
interventions on At the same time, the variables Zi are themselves affected by pre-
vious interventions. To define this recursion appropriately, we use an inductive defini-
tion. The base case is The inductive case is Here theXi

g � gi(Z
i
Xg

� i, X�i
g ).X1

g � g1(Z1).

X�i.

Xi H X

X�ii � j.

354 Reflections, Elaborations, and Discussions with Readers

Z YX0

X1

Figure 11.12 A graph for which g-estimation is valid while
Robins’ condition (3.62) is violated.
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It should not be too hard to convince our Bayesian that these two assessments
could not be totally arbitrary, but must obey some restrictions of coherence. For exam-
ple, the inequality should be obeyed for all events x and y.17

Moreover, coherence restrictions of this kind are automatically satisfied whenever 
P(y ƒ do(x)) is derived from a causal network according to the rules of Chapter 3. 
These two arguments should be inviting for a Bayesian to start drawing mathematical
benefits from causal calculus, while maintaining caution and skepticism, and, as they
say in the Talmud:

“From benefits comes understanding”
(free translation of “mitoch shelo lishma, ba lishma” (Talmud, Psahim, 50b)).

Bayesians will eventually embrace causal vocabulary, I have no doubt.

11.6.4 Why Isn’t Confounding a Statistical Concept?

In June 2001, I received two anonymous reviews of my paper “Causal Inference in the
Health Sciences” (Pearl 2001c). The questions raised by the reviewers astounded me, for
they reminded me of the archaic way some statisticians still think about causality and of
the immense educational effort that still lies ahead. In the interest of contributing to this
effort, I am including my reply in this chapter. Related discussion on the causal–statistical
distinction is presented in Section 11.1.

Excerpts from Reviewers’ Comments:

Reviewer 1.

“The contrast between statistical and causal concepts is overdrawn. Randomization,
instrumental variables, and so forth have clear statistical definitions. … [the paper urges]
‘that any systematic approach to causal analysis must require new mathematical nota-
tion.’ This is false: there is a long tradition of informal – but systematic and successful –
causal inference in the medical sciences.”

Reviewer 2.

“The paper makes many sweeping comments which rely on distinguishing ‘statistical’
and ‘causal’ concepts … Also, included in the list of causal (and therefore, according to
the paper, non-statistical) concepts is, for example, confounding, which is solidly founded
in standard, frequentist statistics. Statisticians are inclined to say things like ‘U is a
potential confounder for examining the effect of treatment X on outcome Y when both
U and X and U and Y are not independent. So why isn’t confounding a statistical con-
cept?’ … If the author wants me to believe this, he’s going to have to show at least one
example of how the usual analyses fail.”

P(y � do(x)) � P(y, x)

11.6 Decisions and Confounding (Chapter 6) 387

17 This inequality follows from (3.52) or (9.33). A complete characterization of coherence constraints
is given in Tian, Kang, and Pearl (2006). As an example, for any three variables X, Y, Z, coherence 
dictates: . If the structure of a
causal graph is known, the conditions of Definition 1.3.1 constitute a complete characterization
of all coherence requirements.

P(y � do(x, z)) � P(y, x � do(z)) � P(y, z � do(x)) � P(x, y, z) � 0
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Author’s Second Reply:

The independence actually holds in the graph shown in Figure 11.19.
This is because Yxz is separated from by the variable , in the “triple network”

that you mentioned. The license to replace W with is obtained from rule 3 of do-
calculus, which implies � W, since X is a nondescendant of X. This points to an
important refinement needed in the twin network generalization: causal axioms may
entail certain equality constraints among seemingly distinct counterfactual variables,
and these hidden equalities need to be considered when we apply d-separation to coun-
terfactual networks. A systematic way of encoding and managing these equalities is
presented in Shpitser and Pearl (2007).

11.8 INSTRUMENTAL VARIABLES AND NONCOMPLIANCE

11.8.1 Tight Bounds under Noncompliance (Question to Author)

I am referring to the way you improved Manski’s bounds on treatment effects when we
have imperfect compliance. Which information does your approach exploit that the one
by Manski does not? What is the intuition behind it?

Author’s Reply:

We used the same information and same assumptions as Manski, and we derived the
tight bounds using linear-programming analysis in the 16-dimensional space defined by the
canonical partition of U (Balke and Pearl 1994a, 1995a). Manski, evidently, either did
not aim at getting tight bounds, or was not aware of the power of partitioning U into its
equivalence classes. Recall, this partition was unknown to economists before Frangakis
and Rubin (2002) popularized it, under the rubric “principal stratification.”

Manski’s bounds, as I state on page 269, are tight under certain conditions, e.g., no
contrarians. This means that one can get narrower bounds only when there are contrari-
ans in the population, as in the examples discussed in Pearl (1995b). It is shown there
how data representing the presence of contrarians can provide enough information to
make the bounds collapse to a point. That article also gives an intuitive explanation of
how this can happen.

It is important to mention at this point that the canonical partition conception, cou-
pled with the linear programming method developed in Balke and Pearl (1994a,
1995a,b), has turned into a powerful analytical tool in a variety of applications. Tian and
Pearl (2000) applied it to bound probabilities of causation; Kaufman et al. (2005) and
Cai et al. (2008) used it to bound direct effects in the presence of confounded mediation,
and, similarly, Imai et al. (2008) used it to bound natural direct and indirect effects. The
closed-form expressions derived by this method enable researchers to assess what fea-
tures of the distribution are critical for narrowing the widths of the bounds.

Rubin (2004), in an independent exploration, attempted to apply canonical partitions
to the analysis of direct and indirect effects within the traditional potential-outcome
framework but, lacking the graphical and structural perspectives, was led to conclude
that such effects are “ill-defined” and “more deceptive than helpful.” I believe readers of
this book, guided by the structural roots of potential-outcome analysis, will reach more
positive conclusions (see Sections 4.5 and 11.4.2).

Wx*

Wx*

Wx*Zx*

Yxz �� Zx* � W
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and derive

.

In other words, is reducible to empirically estimable quantities; 
is estimable in experimental studies and the other quantities in observa-

tional studies. Moreover, if data support the equality we can safely
conclude that a treated patient would have zero chance of survival had the treatment not
been taken. Those who mistrust counterfactual analysis a priori, as a calculus dealing
with undefined quantities, would never enjoy the discovery that some of those quantities
are empirically definable. Logic, when gracious, can rerun history for us.

The second puzzle was given intuitive explanation in the paragraph following
equation (9.54).

The third puzzle is the one that gives most people a shock of disbelief. For a statisti-
cian, in particular, it is a rare case to be able to say anything certain about a specific indi-
vidual who was not tested directly. This emanates from two factors. First, statisticians
normally deal with finite samples, the variability of which rules out certainty in any claim,
not merely about an individual but also about any property of the underlying distribution.
This factor, however, should not enter into our discussion, for we have been assuming
infinite samples throughout. (Readers should imagine that the numbers in Table 9.2
stand for millions.)

The second factor emanates from the fact that, even when we know a distribution
precisely, we cannot assign a definite probabilistic estimate to a property of a specific
individual drawn from that distribution. The reason is, so the argument goes, that we
never know, let alone measure, all the anatomical and psychological variables that deter-
mine an individual’s behavior, and, even if we knew, we would not be able to represent
them in the crude categories provided by the distribution at hand. Thus, because of this
inherent crudeness, the sentence “Mr. A would be dead” can never be assigned a proba-
bility of one (or, in fact, any definite probability).

This argument, advanced by Freedman and Stark (1999), is incompatible with the
way probability statements are used in ordinary discourse, for it implies that every prob-
ability statement about an individual must be a statement about a restricted subpopula-
tion that shares all the individual’s characteristics. Taken to the extreme, such a restric-
tive interpretation would insist on characterizing the plaintiff in minute detail, and would
reduce PN to zero or one when all relevant details were accounted for. It is inconceiv-
able that this interpretation underlies the intent of judicial standards. By using the word-
ing “more probable than not,” lawmakers have instructed us to ignore specific features
for which data is not available, and to base our determination on the most specific fea-
tures for which reliable data is available. In our example, two properties of Mr. A were
noted: (1) that he died and (2) that he chose to use the drug; these were properly taken
into account in bounding PN. If additional properties of Mr. A become known, and
deemed relevant (e.g., that he had red hair, or was left-handed), these too could, in prin-
ciple, be accounted for by restricting the analysis to data representing the appropriate
subpopulations. However, in the absence of such data, and knowing in advance that we
will never be able to match all the idiosyncratic properties of Mr. A, the lawmakers’
specification must be interpreted relative to the properties at hand.

P(yx!) " P(y, x!),
P(y ! do(x!))

P(yx!) "P(yx! ! x)

P(yx! ! x) " "P(yx!) # P(y, x!)#>P(x)
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= P(y | x') + [P(yx') - P(y | x)]/P(x).
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