Contents

Preface to the First Edition
Preface to the Second Edition

1 Introduction to Probabilities, Graphs, and Causal Models

1.1 Introduction to Probability Theory
1.1.1 Why Probabilities?
1.1.2 Basic Concepts in Probability Theory
1.1.3 Combining Predictive and Diagnostic Supports
1.1.4 Random Variables and Expectations
1.1.5 Conditional Independence and Graphoids

1.2 Graphs and Probabilities
1.2.1 Graphical Notation and Terminology
1.2.2 Bayesian Networks
1.2.3 The d-Separation Criterion
1.2.4 Inference with Bayesian Networks

1.3 Causal Bayesian Networks
1.3.1 Causal Networks as Oracles for Interventions
1.3.2 Causal Relationships and Their Stability

1.4 Functional Causal Models
1.4.1 Structural Equations
1.4.2 Probabilistic Predictions in Causal Models
1.4.3 Interventions and Causal Effects in Functional Models
1.4.4 Counterfactuals in Functional Models

1.5 Causal versus Statistical Terminology

2 A Theory of Inferred Causation

2.1 Introduction – The Basic Intuitions
2.2 The Causal Discovery Framework
2.3 Model Preference (Occam’s Razor)
2.4 Stable Distributions
2.5 Recovering DAG Structures
2.6 Recovering Latent Structures
6.3.3 Failing Necessity via Barren Proxies 186
6.3.4 Failing Necessity via Incidental Cancellations 188
6.4 Stable versus Incidental Unbiasedness 189
 6.4.1 Motivation 189
 6.4.2 Formal Definitions 191
 6.4.3 Operational Test for Stable No-Confounding 192
6.5 Confounding, Collapsibility, and Exchangeability 193
 6.5.1 Confounding and Collapsibility 193
 6.5.2 Confounding versus Confounders 194
 6.5.3 Exchangeability versus Structural Analysis of Confounding 196
6.6 Conclusions 199

7 The Logic of Structure-Based Counterfactuals 201
7.1 Structural Model Semantics 202
 7.1.1 Definitions: Causal Models, Actions, and Counterfactuals 202
 7.1.2 Evaluating Counterfactuals: Deterministic Analysis 207
 7.1.3 Evaluating Counterfactuals: Probabilistic Analysis 212
 7.1.4 The Twin Network Method 213
7.2 Applications and Interpretation of Structural Models 215
 7.2.1 Policy Analysis in Linear Econometric Models: An Example 215
 7.2.2 The Empirical Content of Counterfactuals 217
 7.2.3 Causal Explanations, Utterances, and Their Interpretation 221
 7.2.4 From Mechanisms to Actions to Causation 223
 7.2.5 Simon’s Causal Ordering 226
7.3 Axiomatic Characterization 228
 7.3.1 The Axioms of Structural Counterfactuals 228
 7.3.2 Causal Effects from Counterfactual Logic: An Example 231
 7.3.3 Axioms of Causal Relevance 234
7.4 Structural and Similarity-Based Counterfactuals 238
 7.4.1 Relations to Lewis’s Counterfactuals 238
 7.4.2 Axiomatic Comparison 240
 7.4.3 Imaging versus Conditioning 242
 7.4.4 Relations to the Neyman–Rubin Framework 243
 7.4.5 Exogeneity and Instruments: Counterfactual and Graphical Definitions 245
7.5 Structural versus Probabilistic Causality 249
 7.5.1 The Reliance on Temporal Ordering 249
 7.5.2 The Perils of Circularity 250
 7.5.3 Challenging the Closed-World Assumption, with Children 252
 7.5.4 Singular versus General Causes 253
 7.5.5 Summary 256

8 Imperfect Experiments: Bounding Effects and Counterfactuals 259
8.1 Introduction 259
 8.1.1 Imperfect and Indirect Experiments 259
 8.1.2 Noncompliance and Intent to Treat 261
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2 Bounding Causal Effects with Instrumental Variables</td>
<td>262</td>
</tr>
<tr>
<td>8.2.1 Problem Formulation: Constrained Optimization</td>
<td>262</td>
</tr>
<tr>
<td>8.2.2 Canonical Partitions: The Evolution of Finite-Response Variables</td>
<td>263</td>
</tr>
<tr>
<td>8.2.3 Linear Programming Formulation</td>
<td>266</td>
</tr>
<tr>
<td>8.2.4 The Natural Bounds</td>
<td>268</td>
</tr>
<tr>
<td>8.2.5 Effect of Treatment on the Treated (ETT)</td>
<td>269</td>
</tr>
<tr>
<td>8.2.6 Example: The Effect of Cholestyramine</td>
<td>270</td>
</tr>
<tr>
<td>8.3 Counterfactuals and Legal Responsibility</td>
<td>271</td>
</tr>
<tr>
<td>8.4 A Test for Instruments</td>
<td>274</td>
</tr>
<tr>
<td>8.5 A Bayesian Approach to Noncompliance</td>
<td>275</td>
</tr>
<tr>
<td>8.5.1 Bayesian Methods and Gibbs Sampling</td>
<td>275</td>
</tr>
<tr>
<td>8.5.2 The Effects of Sample Size and Prior Distribution</td>
<td>277</td>
</tr>
<tr>
<td>8.5.3 Causal Effects from Clinical Data with Imperfect Compliance</td>
<td>277</td>
</tr>
<tr>
<td>8.5.4 Bayesian Estimate of Single-Event Causation</td>
<td>280</td>
</tr>
<tr>
<td>8.6 Conclusion</td>
<td>281</td>
</tr>
<tr>
<td>9 Probability of Causation: Interpretation and Identification</td>
<td>283</td>
</tr>
<tr>
<td>9.1 Introduction</td>
<td>283</td>
</tr>
<tr>
<td>9.2 Necessary and Sufficient Causes: Conditions of Identification</td>
<td>286</td>
</tr>
<tr>
<td>9.2.1 Definitions, Notation, and Basic Relationships</td>
<td>286</td>
</tr>
<tr>
<td>9.2.2 Bounds and Basic Relationships under Exogeneity</td>
<td>289</td>
</tr>
<tr>
<td>9.2.3 Identifiability under Monotonicity and Exogeneity</td>
<td>291</td>
</tr>
<tr>
<td>9.2.4 Identifiability under Monotonicity and Nonexogeneity</td>
<td>293</td>
</tr>
<tr>
<td>9.3 Examples and Applications</td>
<td>296</td>
</tr>
<tr>
<td>9.3.1 Example 1: Betting against a Fair Coin</td>
<td>296</td>
</tr>
<tr>
<td>9.3.2 Example 2: The Firing Squad</td>
<td>297</td>
</tr>
<tr>
<td>9.3.3 Example 3: The Effect of Radiation on Leukemia</td>
<td>299</td>
</tr>
<tr>
<td>9.3.4 Example 4: Legal Responsibility from Experimental and Nonexperimental Data</td>
<td>302</td>
</tr>
<tr>
<td>9.3.5 Summary of Results</td>
<td>303</td>
</tr>
<tr>
<td>9.4 Identification in Nonmonotonic Models</td>
<td>304</td>
</tr>
<tr>
<td>9.5 Conclusions</td>
<td>307</td>
</tr>
<tr>
<td>10 The Actual Cause</td>
<td>309</td>
</tr>
<tr>
<td>10.1 Introduction: The Insufficiency of Necessary Causation</td>
<td>309</td>
</tr>
<tr>
<td>10.1.1 Singular Causes Revisited</td>
<td>309</td>
</tr>
<tr>
<td>10.1.2 Preemption and the Role of Structural Information</td>
<td>311</td>
</tr>
<tr>
<td>10.1.3 Overdetermination and Quasi-Dependence</td>
<td>313</td>
</tr>
<tr>
<td>10.1.4 Mackie’s INUS Condition</td>
<td>313</td>
</tr>
<tr>
<td>10.2 Production, Dependence, and Sustenance</td>
<td>316</td>
</tr>
<tr>
<td>10.3 Causal Beams and Sustenance-Based Causation</td>
<td>318</td>
</tr>
<tr>
<td>10.3.1 Causal Beams: Definitions and Implications</td>
<td>318</td>
</tr>
<tr>
<td>10.3.2 Examples: From Disjunction to General Formulas</td>
<td>320</td>
</tr>
<tr>
<td>10.3.3 Beams, Preemption, and the Probability of Single-Event Causation</td>
<td>322</td>
</tr>
</tbody>
</table>